Recovering Signals Sparse in a Frame: Theory and Applications
恢复帧中稀疏信号:理论与应用
基本信息
- 批准号:1908880
- 负责人:
- 金额:$ 12.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the last two decades, there has been an explosive growth of the development of high dimensional data sensing, representation, and recovery. Problems such as medical imaging in the form of MRI or CT, hyperspectral satellite imaging, radar imaging, and remote sensing can involve large dimensional data where classically designed methods become impractical. The challenges of high dimensional data require techniques such as compressed sensing, which is able to extract the nonlinear low-dimensional structure of the signal. The investigator aims to further advance the scope of compressed sensing with an emphasis on signals that are sparsely represented by a collection of atoms, or a frame. This award will support the development of mathematical techniques for this problem as well as its applications on imaging while providing theoretical guarantees. The analysis in this project will apply broadly to signal processing problems like phase retrieval, one-bit sensing, and many data science problems in general. Compressed sensing aims to accurately and stably recover sparse signals from drastically undersampled measurements. The investigator will perform a theoretical analysis for recovering signals that are sparsely synthesized in a frame or dictionary from very few measurements and conduct numerical experiments on imaging applications where subsampled Fourier or convolution measurements are used. This is motivated by (1) numerous practical applications in MRI, MIMO radar, tomography, remote sensing, etc., where sparsity is exploited; (2) the benefit of robust signal acquisition and expansion in redundant frames; and (3) the lack of theoretical work on the synthesis-sparse sensing problem. The expected outcomes of this project are building a framework of this synthesis-sparse sensing problem, analyzing the effectiveness of randomized sensing, and improving image restoration quality with provable guarantees.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年中,有一个爆炸性增长的发展,高维数据的感知,表示和恢复。诸如MRI或CT形式的医学成像、高光谱卫星成像、雷达成像和遥感等问题可能涉及大维度数据,其中经典设计的方法变得不切实际。高维数据的挑战需要诸如压缩感知之类的技术,该技术能够提取信号的非线性低维结构。研究人员的目标是进一步推进压缩传感的范围,重点是由原子集合或帧稀疏表示的信号。该奖项将支持该问题的数学技术的发展及其在成像方面的应用,同时提供理论保证。该项目中的分析将广泛应用于信号处理问题,如相位恢复,一位传感和许多数据科学问题。 压缩感知的目标是从严重欠采样的测量中准确和稳定地恢复稀疏信号。研究人员将进行理论分析,以恢复从很少的测量中在帧或字典中稀疏合成的信号,并对使用子采样傅立叶或卷积测量的成像应用进行数值实验。这是由(1)在MRI、MIMO雷达、断层摄影、遥感等中的许多实际应用激发的,利用稀疏性;(2)在冗余帧中的鲁棒信号获取和扩展的益处;以及(3)缺乏关于合成稀疏感测问题的理论工作。该项目的预期成果是建立这种合成稀疏感知问题的框架,分析随机感知的有效性,并通过可证明的保证提高图像恢复质量。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuemei Chen其他文献
Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.
色散和耗散尺度 α 和 β 对纳维-斯托克斯字母方程能谱的影响。
- DOI:
10.1103/physreve.78.046317 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Xuemei Chen;E. Fried - 通讯作者:
E. Fried
Marinimicrococcus flavescens gen. nov., sp. nov., a new member of the family Geminicoccaceae, isolated from a marine sediment of the South China Sea.
淡黄海微球菌属
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
Zu;Lian;Qing Yuan;Shu;Xuemei Chen;Ming;Xin;Cheng;Yi Jiang - 通讯作者:
Yi Jiang
Interactive reception of online literary translation: the translator-readers dynamics in a discussion forum
- DOI:
10.1080/0907676x.2022.2030375 - 发表时间:
2022-02 - 期刊:
- 影响因子:0
- 作者:
Xuemei Chen - 通讯作者:
Xuemei Chen
Reaction of rhodium oxide clusters toward CO investigated by thermal desorption spectrometry in the gas phase
气相热解吸光谱法研究氧化铑簇与 CO 的反应
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xuemei Chen;Toshiaki Nagata;Ken Miyajima;Fumitaka Mafune - 通讯作者:
Fumitaka Mafune
AN ALGORITHM FOR DIRECT SIMULATION OF LINEAR WAVE PROPAGATION IN IRREGULAR REGIONS
不规则区域线性波传播的直接模拟算法
- DOI:
10.1142/s0218396x09003999 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Xuemei Chen;J. C. W. Rogers;S. L. Means;W. Szymczak - 通讯作者:
W. Szymczak
Xuemei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuemei Chen', 18)}}的其他基金
Recovering structured signals: atoms, matrix separation, and applications
恢复结构化信号:原子、矩阵分离和应用
- 批准号:
2307827 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Recovering Signals Sparse in a Frame: Theory and Applications
恢复帧中稀疏信号:理论与应用
- 批准号:
2050028 - 财政年份:2020
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Arabidopsis 2010: Transcription and Processing Requirements for Noncoding Transcripts Near SiRNA Loci in Arabidopsis
拟南芥 2010:拟南芥中 SiRNA 位点附近非编码转录本的转录和处理要求
- 批准号:
1021465 - 财政年份:2010
- 资助金额:
$ 12.35万 - 项目类别:
Continuing Grant
Role of Methylation in MicroRNA Metabolism in Arabidopsis
甲基化在拟南芥 MicroRNA 代谢中的作用
- 批准号:
0718029 - 财政年份:2007
- 资助金额:
$ 12.35万 - 项目类别:
Continuing Grant
Conference: 24th Symposium in Plant Biology being held January 18-20, 2007 in Riverside, California
会议:第 24 届植物生物学研讨会于 2007 年 1 月 18 日至 20 日在加利福尼亚州里弗赛德举行
- 批准号:
0614729 - 财政年份:2006
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
The Role of HEN1 in MicroRNA Biogenesis in Arabidopsis
HEN1 在拟南芥 MicroRNA 生物发生中的作用
- 批准号:
0612958 - 财政年份:2005
- 资助金额:
$ 12.35万 - 项目类别:
Continuing Grant
The Role of HEN1 in MicroRNA Biogenesis in Arabidopsis
HEN1 在拟南芥 MicroRNA 生物发生中的作用
- 批准号:
0343480 - 财政年份:2004
- 资助金额:
$ 12.35万 - 项目类别:
Continuing Grant
相似国自然基金
植物源烟水对丹参次生代谢产物积累的影响及“smoke signals”机制研究
- 批准号:81673527
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Recovering Signals Sparse in a Frame: Theory and Applications
恢复帧中稀疏信号:理论与应用
- 批准号:
2050028 - 财政年份:2020
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Decoding of motor signals using non-linear generalization of sparse coding and dictionary learning
使用稀疏编码和字典学习的非线性推广对运动信号进行解码
- 批准号:
18KK0308 - 财政年份:2019
- 资助金额:
$ 12.35万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Cross-layer Adaptive Rate/Resolution Design for Energy-Aware Acquisition of Spectrally Sparse Signals Leveraging Spin-based Devices
利用基于自旋的器件实现频谱稀疏信号能量感知采集的跨层自适应速率/分辨率设计
- 批准号:
1810256 - 财政年份:2018
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Statistical-mechanical approach for nonconvex compressed sensing and sparse modeling for correlated signals
非凸压缩感知和相关信号稀疏建模的统计机械方法
- 批准号:
17H06758 - 财政年份:2017
- 资助金额:
$ 12.35万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Recovery of sparse integer-valued signals
稀疏整数值信号的恢复
- 批准号:
520519-2017 - 财政年份:2017
- 资助金额:
$ 12.35万 - 项目类别:
University Undergraduate Student Research Awards
Discrete-Valued Sparse Signals: Theory, Algorithms, and Applications
离散值稀疏信号:理论、算法和应用
- 批准号:
257184199 - 财政年份:2014
- 资助金额:
$ 12.35万 - 项目类别:
Research Grants
Anthropomorphic coding and recognition of mujltimedia signals through sparse representations and auditory objects
通过稀疏表示和听觉对象对多媒体信号进行拟人化编码和识别
- 批准号:
355643-2009 - 财政年份:2013
- 资助金额:
$ 12.35万 - 项目类别:
Discovery Grants Program - Individual
Optimal tests for weak, sparse, and complex signals with application to genetic association studies
适用于遗传关联研究的弱、稀疏和复杂信号的最佳测试
- 批准号:
1309960 - 财政年份:2013
- 资助金额:
$ 12.35万 - 项目类别:
Standard Grant
Anthropomorphic coding and recognition of mujltimedia signals through sparse representations and auditory objects
通过稀疏表示和听觉对象对多媒体信号进行拟人化编码和识别
- 批准号:
355643-2009 - 财政年份:2012
- 资助金额:
$ 12.35万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction of Irregularly Sampled Image Signals Using Sparse Representations
使用稀疏表示重建不规则采样图像信号
- 批准号:
225074913 - 财政年份:2012
- 资助金额:
$ 12.35万 - 项目类别:
Research Grants