Reconstruction of Irregularly Sampled Image Signals Using Sparse Representations
使用稀疏表示重建不规则采样图像信号
基本信息
- 批准号:225074913
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The sampling process is a fundamental element of digital signal processing. It is necessary to convert a continuous signal from the analog domain into the digital domain and it is the first step for further processing by methods and algorithms from digital signal processing. Commonly, a regular sampling is used where the sampling positions are regularly arranged on a corresponding grid. This kind of sampling is comprehensively investigated and documented and most methods from digital signal processing work with sampling positions on a regular grid. Due to some image acquisition systems or due to explicitly selecting the sampling positions in order to avoid artifacts from aliasing, the sampling positions may be distributed irregularly on the grid. For further processing, these sampling positions have to be reconstructed on a regular grid. During previous work on the reconstruction of irregularly sampled image data, it has been shown that this reconstruction can be done by identifying the dominant basis function and estimating its weight. Similar to Compressed Sensing, the property that most natural signals can be represented sparsely in certain domains is exploited. As a first objective, starting from the results for the reconstruction of irregularly sampled image data, a general method shall be developed to reconstruct irregularly sampled multidimensional signals. In doing so, detailed investigations are necessary to understand the effect of irregular sampling on multidimensional signals and to adapt the reconstruction process to this problem. By using these new insights, a method shall be developed to capture and reconstruct a video consisting of irregularly sampled frames with high quality. Existing sensors are either able to capture a video with high spatial but low temporal resolution or vice versa. By means of this new method a video with both high spatial and high temporal resolution can be acquired. Moreover, the relationship between irregular sampling followed by a sparsity-based reconstruction algorithm that has to be developed in this work and Compressed Sensing shall be theoretically investigated. Also the benefits of different reconstruction algorithms used in Compressed Sensing and the new sparsity-based reconstruction method shall be combined.
采样过程是数字信号处理的基本要素。需要将连续信号从模拟域转换到数字域,并且这是通过来自数字信号处理的方法和算法进行进一步处理的第一步。通常,使用规则采样,其中采样位置规则地布置在相应的网格上。这种采样被广泛研究和记录,并且来自数字信号处理的大多数方法都在规则网格上进行采样。由于某些图像采集系统或由于明确选择采样位置以避免来自混叠的伪影,采样位置可能不规则地分布在网格上。为了进一步处理,必须在规则网格上重建这些采样位置。在以前的工作不规则采样的图像数据的重建,它已被证明,这种重建可以通过识别的主导基函数和估计其权重。与压缩感知类似,大多数自然信号可以在某些域中稀疏表示的属性被利用。作为第一个目标,从不规则采样的图像数据的重建结果开始,将开发一种通用方法来重建不规则采样的多维信号。在这样做时,详细的调查是必要的,以了解不规则采样对多维信号的影响,并适应重建过程中这个问题。通过使用这些新的见解,将开发一种方法来捕获和重建由高质量的不规则采样帧组成的视频。现有的传感器能够捕获具有高空间分辨率但低时间分辨率的视频,反之亦然。通过这种新方法,可以获得具有高空间和高时间分辨率的视频。此外,不规则采样后,必须在这项工作中开发的基于稀疏性的重建算法和压缩感知之间的关系进行理论研究。此外,压缩感知中使用的不同重建算法和新的基于稀疏性的重建方法的益处将被组合。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Non-Regular Sampling Sensor Using Frequency Selective Reconstruction
- DOI:10.1109/tcsvt.2018.2876653
- 发表时间:2019-10
- 期刊:
- 影响因子:8.4
- 作者:Markus Jonscher;Jürgen Seiler;Daniela Lanz;M. Schöberl;M. Bätz;André Kaup
- 通讯作者:Markus Jonscher;Jürgen Seiler;Daniela Lanz;M. Schöberl;M. Bätz;André Kaup
Iterative Optimization of Quarter Sampling Masks for Non-Regular Sampling Sensors
非规则采样传感器四分之一采样模板的迭代优化
- DOI:10.1109/icip.2018.8451658
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:S. Grosche;J. Seiler;A. Kaup
- 通讯作者:A. Kaup
Reconstruction of images taken by a pair of non-regular sampling sensors using correlation based matching
使用基于相关性的匹配重建一对非规则采样传感器拍摄的图像
- DOI:10.1109/icip.2014.7025582
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:M. Jonscher;J. Seiler;T. Richter;M. Bätz;A. Kaup
- 通讯作者:A. Kaup
Resampling Images to a Regular Grid From a Non-Regular Subset of Pixel Positions Using Frequency Selective Reconstruction
- DOI:10.1109/tip.2015.2463084
- 发表时间:2015-07
- 期刊:
- 影响因子:10.6
- 作者:Jürgen Seiler;Markus Jonscher;M. Schöberl;André Kaup
- 通讯作者:Jürgen Seiler;Markus Jonscher;M. Schöberl;André Kaup
Texture-dependent frequency selective reconstruction of non-regularly sampled images
非规则采样图像的纹理相关频率选择性重建
- DOI:10.1109/pcs.2016.7906355
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:M. Jonscher;J. Seiler;A. Kaup
- 通讯作者:A. Kaup
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. André Kaup其他文献
Professor Dr.-Ing. André Kaup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. André Kaup', 18)}}的其他基金
Video Coding for Deep Learning-Based Machine-to-Machine Communication
基于深度学习的机器对机器通信的视频编码
- 批准号:
426084215 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Projection-Based Ultra Wide-Angle and 360° Video Coding
基于投影的超广角和 360° 视频编码
- 批准号:
418866191 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Model-based mesh-to-grid image resampling with application to robust object detection, recognition and tracking
基于模型的网格到网格图像重采样,应用于稳健的对象检测、识别和跟踪
- 批准号:
402837983 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Efficient Scalable Analysis and Coding of Hypervolume Data
超容量数据的高效可扩展分析和编码
- 批准号:
175165638 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Extrapolation mehrdimensionaler diskreter Signale und deren Anwendung in der Bild- und Videokommunikation
多维离散信号外推及其在图像视频通信中的应用
- 批准号:
5446991 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Camera Array for Hyperspectral Video Imaging Using Cross-Spectral Multi-View Fusion
使用跨光谱多视图融合进行高光谱视频成像的相机阵列
- 批准号:
491814627 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Advanced Image Sensing Using Arbitrarily Shaped Pixels and Neural Network Reconstruction
使用任意形状的像素和神经网络重建的高级图像传感
- 批准号:
516695992 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Learning-Based Wavelet Video Coding Using Deep Adaptive Lifting
使用深度自适应提升的基于学习的小波视频编码
- 批准号:
461649014 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Losless and lossy compression of screen-content data using machine learning
使用机器学习对屏幕内容数据进行无损和有损压缩
- 批准号:
438221930 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Causal Inference with Irregularly Spaced Observation Times
不规则间隔观察时间的因果推断
- 批准号:
2242776 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
An investigation of the conjugate heat transfer in turbulent natural convection with irregularly rough wall
不规则粗糙壁面湍流自然对流共轭传热研究
- 批准号:
22K03966 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
III: Small: Predictive Modeling from High-Dimensional, Sparsely and Irregularly Sampled, Longitudinal Data
III:小:根据高维、稀疏和不规则采样的纵向数据进行预测建模
- 批准号:
2226025 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Framework: Awkward Arrays - Accelerating scientific data analysis on irregularly shaped data
框架:Awkward Arrays - 加速对不规则形状数据的科学数据分析
- 批准号:
2103945 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Development of novel hepatocellular carcinoma biomarkers and drug targets focusing on irregularly regenerating hepatocytes.
开发新型肝细胞癌生物标志物和药物靶点,重点关注不规则再生的肝细胞。
- 批准号:
20K07706 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
- 批准号:
RGPIN-2014-03989 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Irregularly Measured Longitudinal Data
不规则测量纵向数据的统计方法
- 批准号:
RGPIN-2014-03989 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of a novel method to specifically and artificially degrade irregularly post-translationally modified disease-related proteins in cells
开发一种新方法来特异性地人工降解细胞中不规则翻译后修饰的疾病相关蛋白
- 批准号:
18K19308 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Statistical models for irregularly sized objects
不规则尺寸物体的统计模型
- 批准号:
508325-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Engage Grants Program
Improving clinical decision making through Bayesian causal inference with irregularly observed longitudinal data
通过不规则观察的纵向数据进行贝叶斯因果推理来改善临床决策
- 批准号:
365453 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Studentship Programs