RI: Small: Collaborative Research: Minimum-Cost Strategies for Sequential Search and Evaluation

RI:小型:协作研究:顺序搜索和评估的最低成本策略

基本信息

  • 批准号:
    1909335
  • 负责人:
  • 金额:
    $ 35.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

In many situations, tasks are performed sequentially. For example, a robot searching a building for a hidden bomb will search room by room, in some order, until the bomb is found. An automated medical diagnosis procedure might first perform one medical test, observe its outcome, then perform another test, and so forth, until the diagnosis becomes clear. It is becoming increasingly important to improve the way intelligent systems operate in these types of situations. This project will develop algorithms and software that systems can use to determine the order in which to perform tasks, so as to minimize costs incurred or time spent. Because the outcomes of tasks are often unknown until the tasks are performed, the algorithms will be designed to enable systems to quickly make dynamic decisions, based on new information obtained as tasks are performed. In addition to the robot search and medical diagnosis applications described above, this project has applications to many other areas, including determining network connectivity, quality testing of manufactured products, and evaluating database queries. The project will provide research opportunities to graduate and talented undergraduate students, and the researchers will engage in outreach activities, both at the college and K-12 levels, to students in groups that are under-represented in computer science.The project research will focus on fundamental sequential ordering problems for search and evaluation in two settings. In the first setting, uncertainty about outcomes is modeled by a known probability distribution, and the goal is to minimize expected cost for the distribution. In the second, outcomes are determined by an adversary. Here a robust solution is desired, which minimizes expected cost in the worst case. This is equivalent to regarding the problem as a zero-sum game. In either setting, the search environment could be a discrete set of locations or it could have a more complex network structure. The project will bring together approaches from algorithms, machine learning and game theory. Central goals are as follows: (1) Developing intelligent and adaptable search and evaluation policies that have good theoretical guarantees and can be easily implemented and deployed in practice, (2) Developing algorithmic techniques that will constitute an algorithmic toolkit for researchers working on search and evaluation problems, and (3) Integrating insights and techniques from different areas to give unified approaches to solving broad classes of related problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多情况下,任务是顺序执行的。例如,在建筑物中搜索隐藏炸弹的机器人将按一定顺序逐个房间搜索,直到找到炸弹。自动医疗诊断过程可能首先执行一个医疗测试,观察其结果,然后执行另一个测试,依此类推,直到诊断变得明确。改进智能系统在这类情况下的运行方式变得越来越重要。该项目将开发算法和软件,系统可以使用这些算法和软件来确定执行任务的顺序,从而最大限度地减少成本或花费的时间。由于任务的结果通常在任务执行之前是未知的,因此算法将被设计为使系统能够根据执行任务时获得的新信息快速做出动态决策。除了上面描述的机器人搜索和医疗诊断应用程序之外,该项目还应用于许多其他领域,包括确定网络连接、制造产品的质量测试和评估数据库查询。该项目将为研究生和有才华的本科生提供研究机会,研究人员将在大学和K-12阶段向计算机科学领域代表性不足的学生群体开展推广活动。该项目研究将集中于两种情况下搜索和评价的基本顺序问题。在第一种设置中,结果的不确定性由已知的概率分布建模,目标是最小化该分布的预期成本。在第二种情况下,结果是由对手决定的。这里需要一个健壮的解决方案,在最坏的情况下使预期成本最小化。这相当于将问题视为零和游戏。在这两种情况下,搜索环境可以是一组离散的位置,也可以是一个更复杂的网络结构。该项目将汇集算法、机器学习和博弈论的方法。中心目标如下:(1)开发具有良好理论保障且易于在实践中实施和部署的智能和适应性强的搜索和评估策略;(2)开发算法技术,为研究搜索和评估问题的研究人员提供算法工具包;(3)整合不同领域的见解和技术,为解决广泛的相关问题提供统一的方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Tight Bound for Stochastic Submodular Cover
随机子模覆盖的紧界
  • DOI:
    10.1613/jair.1.12368
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Hellerstein, Lisa;Kletenik, Devorah;Parthasarathy, Srinivasan
  • 通讯作者:
    Parthasarathy, Srinivasan
A General Framework for Approximating Min Sum Ordering Problems
近似最小和排序问题的通用框架
  • DOI:
    10.1287/ijoc.2021.1124
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Happach, Felix;Hellerstein, Lisa;Lidbetter, Thomas
  • 通讯作者:
    Lidbetter, Thomas
Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem
随机布尔函数评估问题的适应性差距
Algorithms for the Unit-Cost Stochastic Score Classification Problem
单位成本随机分数分类问题的算法
  • DOI:
    10.1007/s00453-022-00982-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Grammel, Nathaniel;Hellerstein, Lisa;Kletenik, Devorah;Liu, Naifeng
  • 通讯作者:
    Liu, Naifeng
A Local Search Algorithm for the Min-Sum Submodular Cover Problem
  • DOI:
    10.48550/arxiv.2209.03054
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Hellerstein;T. Lidbetter;R. T. Witter
  • 通讯作者:
    L. Hellerstein;T. Lidbetter;R. T. Witter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lisa Hellerstein其他文献

On the gap between <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll" class="math"><mstyle mathvariant="italic"><mi>ess</mi></mstyle><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math> and <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll" class="math"><mstyle mathvariant="italic"><mi>cnf_size</mi></mstyle><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math>
  • DOI:
    10.1016/j.dam.2012.07.004
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lisa Hellerstein;Devorah Kletenik
  • 通讯作者:
    Devorah Kletenik
Book Review Machine Learning: A Theoretical Approach by Balas K. Natarajan. Morgan Kaufmann Publishers, Inc., 1991
  • DOI:
    10.1023/a:1022691730976
  • 发表时间:
    1993-10-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Lisa Hellerstein
  • 通讯作者:
    Lisa Hellerstein
An algorithm to learn read-once threshold formulas, and transformations between learning models
  • DOI:
    10.1007/bf01205054
  • 发表时间:
    1994-03-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Nader H. Bshouty;Thomas R. Hancock;Lisa Hellerstein;Marek Karpinski
  • 通讯作者:
    Marek Karpinski
Quickly Determining Who Won an Election
快速确定谁赢得了选举
Machine learning: A theoretical approach by Balas K. Natarajan. Morgan Kaufmann Publishers, Inc., 1991
  • DOI:
    10.1007/bf00993107
  • 发表时间:
    1993-10-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Lisa Hellerstein
  • 通讯作者:
    Lisa Hellerstein

Lisa Hellerstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lisa Hellerstein', 18)}}的其他基金

III: Small: Collaborative Proposal: Towards Robust Uncertain Data Management
III:小:协作提案:迈向稳健的不确定数据管理
  • 批准号:
    1217968
  • 财政年份:
    2012
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
AF: Small:Explorations in Computational Learning Theory
AF:小:计算学习理论的探索
  • 批准号:
    0917153
  • 财政年份:
    2009
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
On Learning and Characterizing Classes of Boolean Functions
关于布尔函数类的学习和表征
  • 批准号:
    9877122
  • 财政年份:
    1999
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
POWRE: Support for Research in an New Area: Automated Text Categorization
POWRE:支持新领域的研究:自动文本分类
  • 批准号:
    9806207
  • 财政年份:
    1998
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
CAREER: Structural Properties and Irrelevant Attributes: Implications for Learning and Complexity
职业:结构属性和不相关属性:对学习和复杂性的影响
  • 批准号:
    9896085
  • 财政年份:
    1997
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
CAREER: Structural Properties and Irrelevant Attributes: Implications for Learning and Complexity
职业:结构属性和不相关属性:对学习和复杂性的影响
  • 批准号:
    9501660
  • 财政年份:
    1995
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant
Learnability in Query and Restricted Distribution Models
查询和限制分布模型的可学习性
  • 批准号:
    9210957
  • 财政年份:
    1992
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232054
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232300
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232299
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2334936
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313130
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
  • 批准号:
    2325491
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了