CHS: Small: Highly Realistic Virtual Human Hands using Anatomically Based Modeling
CHS:小:使用基于解剖学的建模的高度逼真的虚拟人手
基本信息
- 批准号:1911224
- 负责人:
- 金额:$ 49.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The skeleton of the human hand consists of 27 bones, including 8 short carpel bones. Current state-of-the-art in human hand modeling only supports an approximate version of human hand because of the difficulty in acquiring a "stable" (without hand movements) data of the internal hand anatomy, as well in segmentation algorithms for identifying bones in the captured anatomical images. Computed Tomography (CT) scans irradiate the hand with harmful radiation and do not have the contrast to show any anatomy other than bones. Magnetic Resonance Imaging (MRI) scanners can provide internal anatomy, but the acquisition is difficult because the hand must be kept still inside the MRI scanner and because a quality scanning session is long (about 10 minutes). The goal of this project is to greatly improve the modeling, simulation and animation of human hands. Such models are useful in many fields. In computer graphics, virtual reality, telecommunication and film, they enable better, more believable virtual hands, enhancing the immersive experience. Accurate hand models can be used to design tools, equipment and everyday objects that must be manipulated by hands. In healthcare, they improve the design of medical devices that come in contact with hands. In the apparel industry, they enable one to design better gloves. These computer models can also improve the design of robotic hands for medical prosthetics, enabling the artificial hands with artificial bones and muscles to move and deform like their real biological counterparts.The project will develop a stable method to acquire hand internal anatomy (bones, muscles, fat) in multiple hand poses using MRI scanners, by manufacturing ergonomic rigid molds that hold the hand in a fixed and known pose during the scan. Real bones do not simply rotate around some center of rotation at the end of another bone, but instead undergo complex rigid body motion relative to their parent bones. Using the acquired bone rigid body motion, the research team will develop new methods to model this complex rigid motion, using novel data-driven and model-based techniques. Finite Element Methods (FEM) based simulations are then applied to combine acquired pose-varying muscle and fat/skin shapes. These advances enable realistic modeling of detailed surface appearance of hands that matches ground truth surface scans and that generalizes to arbitrary hand poses. The research team will then build a computer model for how the bones and muscles of the human hand move when the hand is articulated. Given the three-dimensional surface scans of the hand in a few poses, the research team also will use computer simulation to "fill-in" occlusions in scanned poses (occurring in a closed hand, fist pose and similar). This procedure will create a computer model of both the internal hand anatomy and the external hand appearance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人的手骨架由27块骨头组成,其中包括8块短心皮骨。由于难以获得手部内部解剖结构的“稳定”(没有手部运动)数据,以及在捕获的解剖图像中识别骨骼的分割算法,目前最先进的人手建模仅支持近似版本的人手。计算机断层扫描(CT)用有害的辐射照射手部,没有对比显示除骨头以外的任何解剖结构。磁共振成像(MRI)扫描仪可以提供内部解剖结构,但由于手必须保持静止在MRI扫描仪内,并且高质量的扫描时间很长(大约10分钟),因此获取困难。这个项目的目标是大大提高人手的建模,仿真和动画。这样的模型在许多领域都很有用。在计算机图形学、虚拟现实、电信和电影领域,它们可以实现更好、更可信的虚拟手,增强身临其境的体验。精确的手部模型可以用来设计必须用手操作的工具、设备和日常用品。在医疗保健领域,他们改进了与手接触的医疗设备的设计。在服装行业,它们使人们能够设计出更好的手套。这些计算机模型还可以改进用于医疗义肢的机器人手的设计,使具有人造骨骼和人造肌肉的假肢能够像真正的生物对手一样移动和变形。该项目将开发一种稳定的方法,通过制造符合人体工程学的刚性模具,在扫描过程中使手保持固定和已知的姿势,使用MRI扫描仪获取多种手部姿势的手部内部解剖结构(骨骼,肌肉,脂肪)。真正的骨头并不是简单地围绕另一块骨头末端的某个旋转中心旋转,而是相对于母体骨骼进行复杂的刚体运动。利用获得的骨刚体运动,研究小组将开发新的方法来模拟这种复杂的刚体运动,使用新的数据驱动和基于模型的技术。然后应用基于有限元方法(FEM)的模拟来结合获得的姿势变化的肌肉和脂肪/皮肤形状。这些进步使手的细节表面外观的逼真建模,与地面真实表面扫描相匹配,并推广到任意手的姿势。然后,研究小组将建立一个计算机模型,研究当人手被连接时,人手的骨骼和肌肉是如何运动的。考虑到几种姿势的手部三维表面扫描,研究团队还将使用计算机模拟来“填补”扫描姿势中的闭塞(发生在握紧的手、拳头姿势和类似的姿势中)。这个程序将创建一个手部内部解剖结构和手部外部外观的计算机模型。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling of Personalized Anatomy using Plastic Strains
使用塑料应变进行个性化解剖学建模
- DOI:10.1145/3454118
- 发表时间:2021
- 期刊:
- 影响因子:6.2
- 作者:Bohan Wang, George Matcuk
- 通讯作者:Bohan Wang, George Matcuk
Large-Strain Surface Modeling Using Plasticity
使用塑性进行大应变表面建模
- DOI:10.1109/tvcg.2023.3289811
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Wen, Jiahao;Wang, Bohan;Barbič, Jernej
- 通讯作者:Barbič, Jernej
CUDA Deformers for Model Reduction
- DOI:10.1145/3424636.3426895
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Bohan Wang;J. Barbič
- 通讯作者:Bohan Wang;J. Barbič
Simulation of Hand Anatomy Using Medical Imaging
使用医学成像模拟手部解剖结构
- DOI:10.1145/3550454.3555486
- 发表时间:2022
- 期刊:
- 影响因子:6.2
- 作者:Zheng, Mianlun;Wang, Bohan;Huang, Jingtao;Barbič, Jernej
- 通讯作者:Barbič, Jernej
ERGOBOSS: onomic ptimization of dy-upporting urfaces
ERGOBOSS:dy 支持表面的经济优化
- DOI:10.1109/tvcg.2021.3112127
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Zhao, Danyong;Li, Yijing;Chaudhuri, Siddhartha;Langlois, Timothy;Barbic, Jernej
- 通讯作者:Barbic, Jernej
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jernej Barbic其他文献
Jernej Barbic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jernej Barbic', 18)}}的其他基金
CHS: Small: Fast simulation of geometrically complex multibody systems in contact and self-contact
CHS:小型:快速模拟接触和自接触的几何复杂多体系统
- 批准号:
1422869 - 财政年份:2014
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
CAREER: Interactive Physically Based Animation and Optimal Control Using Model Reduction
职业:基于物理的交互式动画和使用模型缩减的最优控制
- 批准号:
1055035 - 财政年份:2011
- 资助金额:
$ 49.89万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
AuNPs and DNA Aptamer-Driven Terahertz Sensor for Highly Sensitive Detection of Small Molecules
AuNP 和 DNA 适配体驱动的太赫兹传感器,用于小分子的高灵敏度检测
- 批准号:
24K07524 - 财政年份:2024
- 资助金额:
$ 49.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and implementation of a small-scale and highly efficient genomic selection method using "look-ahead" based on reinforcement learning
基于强化学习的“前瞻”小规模高效基因组选择方法的开发和实施
- 批准号:
22H02306 - 财政年份:2022
- 资助金额:
$ 49.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of ordered multinuclear active site structures from mononuclear metalates and development of highly difficult reactions using small molecules
从单核金属盐创建有序多核活性位点结构并使用小分子开发高难度反应
- 批准号:
22H04971 - 财政年份:2022
- 资助金额:
$ 49.89万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
SHF: Small: Rethinking Virtualization at the Edge to Support Highly-efficient and Low-power Applications
SHF:小型:重新思考边缘虚拟化以支持高效和低功耗应用
- 批准号:
2210744 - 财政年份:2022
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
III: Small: Towards Highly Accurate Map Services
III:小:迈向高精度地图服务
- 批准号:
2203553 - 财政年份:2022
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
CIF: Small: RUI: Highly Nonlinear and Pseudorandom Structures for Communications and Sensing
CIF:小:RUI:用于通信和传感的高度非线性和伪随机结构
- 批准号:
2206454 - 财政年份:2022
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Highly accurate evaluation of dynamic response of foundations subjected to large earthquake ground motions based on small earthquake events
基于小震事件高精度评估大地震地基运动地基动力响应
- 批准号:
21H01414 - 财政年份:2021
- 资助金额:
$ 49.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CNS Core: Small: Not All Cameras are Created Equal: Systems Support for Highly Adaptive Video Analytics Pipelines
CNS 核心:小型:并非所有摄像机都是一样的:对高度自适应视频分析管道的系统支持
- 批准号:
2153449 - 财政年份:2021
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Targeting small molecule drugs to lymph nodes and brain by highly lipophilic prodrugs approach
通过高亲脂性前药方法将小分子药物靶向淋巴结和大脑
- 批准号:
2436275 - 财政年份:2020
- 资助金额:
$ 49.89万 - 项目类别:
Studentship
CNS Core: Small: Not All Cameras are Created Equal: Systems Support for Highly Adaptive Video Analytics Pipelines
CNS 核心:小型:并非所有摄像机都是一样的:对高度自适应视频分析管道的系统支持
- 批准号:
2006437 - 财政年份:2020
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant