Attitude towards information in multi-agent settings: Understanding and mitigating Avoidance and Over-Evaluation

多主体环境中对信息的态度:理解和减轻回避和过度评估

基本信息

  • 批准号:
    1919453
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

New technologies in sensing, data communication and processing allow for extensive instrumentation of the built environment, and the massive flow of information collectable by sensors can transform the operation and the functionality of urban systems. However, this development depends also on the attitude of citizens and stakeholders toward information. This project investigates how interacting agents take decisions about collecting information, with focus on users and managers of urban systems interacting with public policies. For rational and isolated agents acting without external constraints, "information never hurts" and data with low impact on the agents' belief have a small value. This implies, for example, that these agents are always willing to install free (or cheap) sensors, and to install expensive ones only if they provide high-impact information. However, these intuitive properties do not hold true in multi-agent settings, when agents compete one against each other, nor for agents acting under external constraints as those imposed by regulations. Integrating analysis in social science, engineering and computer science, the project will develop a framework for modeling the attitude towards information in these contexts, depending on the agents' preference and the external regulations.The goals of the project are: 1) To develop a framework for assessing the Value of Information in multi-agent settings, modeling the interaction between policy makers and decision makers following external regulations, 2) to gather and analyze empirical data about the attitude toward information, using surveys and interviews among users, and calibrate the models developed in (1), 3) to design mechanisms alleviating Information Avoidance and Over Evaluation, and assess their effectiveness. The project integrates probabilistic models of quantities to be measured and of sensor performance, agents' utility functions and external constraints, optimization methods and behavior modeling, to assess the Value or Information via Bayesian pre-posterior analysis. Such approach will allow understanding how Information Avoidance and Over Evaluation arise, and how appropriate mechanisms of incentives and regulations can mitigate them. The project's outcomes will be key for a better empirical understanding of the attitude towards information, for developing effective large-scale monitor of the built environment and public policies promoting effective information collection, integrating societal and agents' utilities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感、数据通信和处理方面的新技术允许对建筑环境进行广泛的仪表化,传感器收集的大量信息流可以改变城市系统的运作和功能。然而,这种发展也取决于公民和利益攸关方对信息的态度。该项目研究了互动代理如何收集信息的决策,重点是与公共政策互动的城市系统的用户和管理者。对于没有外部约束的理性和孤立的代理人,“信息永远不会伤害”和对代理人信念影响较小的数据具有较小的价值。这意味着,例如,这些代理人总是愿意安装免费(或便宜)的传感器,并安装昂贵的,只有当他们提供高影响力的信息。然而,这些直观的属性并不适用于多代理设置,当代理相互竞争,也不为代理下的外部约束所施加的法规。该项目将结合社会科学、工程学和计算机科学的分析,开发一个框架,用于根据代理人的偏好和外部规则,在这些背景下模拟对信息的态度。该项目的目标是:1)开发一个框架,用于评估多主体环境中的信息价值,模拟政策制定者和决策者之间遵循外部法规的互动,2)通过对用户的调查和访谈,收集和分析有关信息态度的经验数据,并对(1)中开发的模型进行校准; 3)设计缓解信息回避和过度评价的机制,并评估其有效性。 该项目集成了待测量和传感器性能的概率模型、智能体的效用函数和外部约束、优化方法和行为建模,通过贝叶斯前后分析评估价值或信息。这种方法将有助于理解信息规避和过度评价是如何产生的,以及适当的激励和监管机制如何减轻这些问题。该项目的成果将是更好地从经验上理解对信息的态度,开发有效的大规模建筑环境监测和促进有效信息收集的公共政策,整合社会和代理人的效用的关键。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Algorithms for Learning Revenue-Maximizing Two-Part Tariffs
用于学习收入最大化的两部分关税的有效算法
  • DOI:
    10.24963/ijcai.2020/47
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Balcan, Maria-Florina;Prasad, Siddharth;Sandholm, Tuomas
  • 通讯作者:
    Sandholm, Tuomas
Learning to Link
学习链接
How much data is sufficient to learn high-performing algorithms? generalization guarantees for data-driven algorithm design
Learning Predictions for Algorithms with Predictions
通过预测来学习算法的预测
The Demand for, and Avoidance of, Information
  • DOI:
    10.1287/mnsc.2021.4244
  • 发表时间:
    2021-12-15
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Golman, Russell;Loewenstein, George;Saccardo, Silvia
  • 通讯作者:
    Saccardo, Silvia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matteo Pozzi其他文献

Investigating the mechanisms underlying resistance to chemotherapy and to CRISPR-Cas9 in cancer cell lines
  • DOI:
    10.1038/s41598-024-55138-x
  • 发表时间:
    2024-03-05
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Francesca Tomasi;Matteo Pozzi;Mario Lauria
  • 通讯作者:
    Mario Lauria
Cutting-edge technology and automation in the pathology laboratory.
病理实验室的尖端技术和自动化。
Features and outcomes of female and male patients requiring postcardiotomy extracorporeal life support
需要体外循环心脏术后体外生命支持的女性和男性患者的特征及治疗结果
  • DOI:
    10.1016/j.jtcvs.2024.04.033
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    4.400
  • 作者:
    Silvia Mariani;Justine Mafalda Ravaux;Bas C.T. van Bussel;Maria Elena De Piero;Sander M.J. van Kruijk;Anne-Kristin Schaefer;Dominik Wiedemann;Diyar Saeed;Matteo Pozzi;Antonio Loforte;Udo Boeken;Robertas Samalavicius;Karl Bounader;Xiaotong Hou;Jeroen J.H. Bunge;Hergen Buscher;Leonardo Salazar;Bart Meyns;Michael A. Mazzeffi;Sacha Matteucci;Marco Solinas
  • 通讯作者:
    Marco Solinas
Connectivity constraints for eigenvalue reduction in level-set topology optimization
水平集拓扑优化中用于特征值缩减的连通性约束
  • DOI:
    10.1016/j.compstruc.2025.107865
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Giacomo Bonaccorsi;Matteo Pozzi;Jaeyub Hyun;Hyunsun Alicia Kim;Francesco Braghin
  • 通讯作者:
    Francesco Braghin
Elective Impella Recover LP 5.0 utilization for postcardiotomy low-output syndrome after aortic valve replacement
  • DOI:
    10.1016/j.ijcard.2011.07.025
  • 发表时间:
    2012-03-08
  • 期刊:
  • 影响因子:
  • 作者:
    Ciro Mastroianni;Matteo Pozzi;Michaela Niculescu;Ralouka Makri;Julien Clarissou;Alain Pavie;Pascal Leprince
  • 通讯作者:
    Pascal Leprince

Matteo Pozzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matteo Pozzi', 18)}}的其他基金

CAREER: Infrastructure Management under Model Uncertainty: Adaptive Sequential Learning and Decision Making
职业:模型不确定性下的基础设施管理:自适应顺序学习和决策
  • 批准号:
    1653716
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
From Future Learning To Current Action: Long-Term Sequential Infrastructure Planning Under Uncertainty
从未来的学习到当前的行动:不确定性下的长期顺序基础设施规划
  • 批准号:
    1663479
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
PREEVENTS Track 2: Collaborative Research: SHADE: Surface Heat Assessment for Developed Environments
预防措施轨道 2:协作研究:SHADE:发达环境的表面热评估
  • 批准号:
    1664091
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CRISP Type 1/Collaborative Research: A Computational Approach for Integrated Network Resilience Analysis Under Extreme Events for Financial and Physical Infrastructures
CRISP 类型 1/协作研究:金融和物理基础设施极端事件下综合网络弹性分析的计算方法
  • 批准号:
    1638327
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
  • 批准号:
    10722011
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Towards information space-based early warning system for enhancing cyber-incident response process
建立信息天基预警系统以增强网络事件响应过程
  • 批准号:
    22KF0262
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards Efficient Code Review: Automatic Recommendation of Needed Information
实现高效的代码审查:自动推荐所需信息
  • 批准号:
    23K16864
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Building capacity towards engaging older adults in research on health information technology to mitigate and prevent digital ageism
建设能力,让老年人参与健康信息技术研究,以减轻和预防数字年龄歧视
  • 批准号:
    497937
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Role of spontaneous activity towards the assembly and function of neocortical circuits
自发活动对新皮质回路的组装和功能的作用
  • 批准号:
    10737253
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Towards a critical test of the synaptic plasticity and memory hypothesis
对突触可塑性和记忆假说进行关键测试
  • 批准号:
    10681918
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
CAREER: Towards Realizing Timely Information Transfer and Processing for Networked Communication Systems
职业:实现网络通信系统的及时信息传输和处理
  • 批准号:
    2146099
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Towards Detecting Pilots' Work Overload From their Brain Signals - Next Generation Cockpit Information System
通过大脑信号检测飞行员的工作超负荷 - 下一代驾驶舱信息系统
  • 批准号:
    2748759
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Towards scalable quantum information processing and quantum networks
迈向可扩展的量子信息处理和量子网络
  • 批准号:
    RGPIN-2019-05999
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了