ATD: Collaborative Research: Automatic, Adaptive Detection and Description of Change in Time-Lapse Imagery
ATD:协作研究:延时图像变化的自动、自适应检测和描述
基本信息
- 批准号:1924751
- 负责人:
- 金额:$ 9.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will provide algorithms for automatic, adaptive detection and description of changes in time-lapse imagery - a series of images obtained from the same scene over a long time frame. We wish to identify when there are "significant" changes in the scene, and provide a text description of those changes in natural English, where a human analyst provides feedback to determine what kinds of changes are important (e.g., a building being built, deforestation) or unimportant (e.g., seasonal changes). We will in particular focus on satellite or aerial imagery, for which data sets commonly used to train image recognition systems are inadequate. This fundamental research has the potential to transform many application domains, including surveillance, autonomous robotics, monitoring of civil infrastructure, high-throughput microscopy, and climate science, in all of which change is a common and significant occurrence. Our work on novel formulations of change description will also impact on core areas of computer vision and natural language processing, where many similar problems arise. The project will involve graduate students training and postdoctoral associate mentoring.Detecting change is one of the fundamental abilities for an agent perceiving and interacting with the world. Describing changes in natural language is key to making human interaction with such an agent efficient, accurate and transparent. Our work will advance both the theoretical understanding of these goals and the practical methods for implementing them. Specifically, we will address the above challenges for developing novel mathematical frameworks for localizing gradual changes and describing those changes in natural language; we will develop theoretical and practical means to analyze and overcome corruption in observed imagery; and we will develop novel theory and methods for leveraging human feedback. This work will yield fundamental advances in the fields of change point detection and localization, image reconstruction using deep neural networks and limited training data, and multi-armed bandit methodology for adapting to human feedback.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将提供自动、自适应检测和描述延时图像变化的算法--在很长一段时间内从同一场景获得的一系列图像。我们希望确定场景中何时发生“重大”变化,并用自然英语提供这些变化的文字描述,其中人类分析员提供反馈,以确定哪些变化是重要的(例如,正在建造的建筑、砍伐森林)或不重要的变化(例如,季节性变化)。我们将特别关注卫星或航空图像,对于这些图像,通常用于训练图像识别系统的数据集是不够的。这一基础研究有可能改变许多应用领域,包括监视、自主机器人、民用基础设施监测、高通量显微镜和气候科学,在所有这些领域,变化都是常见和重大的事件。我们在变化描述的新公式方面的工作也将影响到计算机视觉和自然语言处理的核心领域,在这些领域出现了许多类似的问题。该项目将包括研究生培训和博士后助理指导。发现变化是代理人感知世界和与世界互动的基本能力之一。用自然语言描述变化是使人类与这样一个代理人进行高效、准确和透明互动的关键。我们的工作将促进对这些目标的理论理解和实现这些目标的实际方法。具体地说,我们将解决在开发新的数学框架以定位渐进变化并用自然语言描述这些变化方面的上述挑战;我们将开发理论和实践手段来分析和克服观察到的图像中的腐败;我们将开发利用人类反馈的新理论和方法。这项工作将在变点检测和定位、使用深度神经网络和有限训练数据的图像重建以及适应人类反馈的多臂强盗方法等领域取得根本性进展。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Shakhnarovich其他文献
Boosted Dyadic Kernel Discriminants
增强二元核判别式
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
B. Moghaddam;Gregory Shakhnarovich - 通讯作者:
Gregory Shakhnarovich
Visually Grounded Learning of Keyword Prediction from Untranscribed Speech
基于视觉的非转录语音关键词预测学习
- DOI:
10.21437/interspeech.2017-502 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
H. Kamper;Shane Settle;Gregory Shakhnarovich;Karen Livescu - 通讯作者:
Karen Livescu
An investigation of computational and informational limits in Gaussian mixture clustering
高斯混合聚类中计算和信息限制的研究
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
N. Srebro;Gregory Shakhnarovich;S. Roweis - 通讯作者:
S. Roweis
Nonlinear physically-based models for decoding motor-cortical population activity
用于解码运动皮质群体活动的非线性物理模型
- DOI:
10.7551/mitpress/7503.003.0162 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Gregory Shakhnarovich;Sung;Michael J. Black - 通讯作者:
Michael J. Black
Adaptive Mean Shift Based Clustering in High Dimensions
基于自适应均值平移的高维聚类
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Gregory Shakhnarovich;Trevor Darrell;P. Indyk - 通讯作者:
P. Indyk
Gregory Shakhnarovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 9.43万 - 项目类别:
Standard Grant














{{item.name}}会员




