ATD: Collaborative Research: Real-Time Network Pattern Change Detection

ATD:协作研究:实时网络模式变化检测

基本信息

项目摘要

The rapidly booming amounts of social networks data from the Internet offers a lot of information to understand human behaviors. First, the networks data contains sparse communication frequencies and some dense clusters, and the clusters change over time, so that feature generation and selection are essential. This research project addresses the statistical challenges for detecting abrupt categories changes in networks. This is important for quantifying human dynamics and accurately identifying unusual events and forecast future threats indicated by those events. Graduate students will be involved in some aspects of the project.This project aims to develop 1) for the static case: we will use zero-inflated or hurdle models to characterize the class link probability. 2) for the dynamic case: the class communication probability is a variable of time, we model the probability by a self-exciting process. 3) we consider the cold-start problem in which the predicted networks vary a lot from the training network, so that there are no enough samples to train classification models. Instead, we will develop matrix-variate clustering and classification models. This project includes several important topics to improve modeling of the network users' categories and identifying efficiently abrupt network pattern changes in real time as well as reducing the influence of outliers. These methods are applicable to various types of networks data such as social networks, biology signals, genome sequences, and so on. The PIs will provide a publicly-available software packages to implement the proposed methods. Additionally, corresponding statistical theories and computational techniques can be extended to advance further research and can be applied to other fields. This project topics cater to the students with hands-on studies in new Big-Data analysis program at the University of Central Florida.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来自互联网的社交网络数据量迅速增长,为理解人类行为提供了大量信息。首先,网络数据包含稀疏的通信频率和一些密集的簇,并且簇随时间变化,因此特征生成和选择至关重要。该研究项目解决了检测网络中类别突然变化的统计挑战。这对于量化人类动态、准确识别异常事件并预测这些事件所表明的未来威胁非常重要。研究生将参与该项目的某些方面。该项目旨在开发1)针对静态情况:我们将使用零膨胀或障碍模型来表征类链接概率。 2)对于动态情况:类通信概率是时间变量,我们通过自激过程对概率进行建模。 3)我们考虑冷启动问题,其中预测网络与训练网络差异很大,从而没有足够的样本来训练分类模型。相反,我们将开发矩阵变量聚类和分类模型。该项目包括几个重要主题,旨在改进网络用户类别的建模、实时有效识别突然的网络模式变化以及减少异常值的影响。这些方法适用于各种类型的网络数据,例如社交网络、生物信号、基因组序列等。 PI 将提供公开可用的软件包来实施所提出的方法。此外,相应的统计理论和计算技术可以扩展以推进进一步的研究,并可以应用于其他领域。该项目主题适合在中佛罗里达大学新大数据分析项目中进行实践研究的学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust discriminant analysis using multi-directional projection pursuit
  • DOI:
    10.1016/j.patrec.2020.09.013
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsin-Hsiung Huang;Teng Zhang
  • 通讯作者:
    Hsin-Hsiung Huang;Teng Zhang
Smoothing regression and impact measures for accidents of traffic flows
交通流事故的平滑回归和影响措施
  • DOI:
    10.1080/02664763.2023.2175799
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Yu, Zhou;Yang, Jie;Huang, Hsin-Hsiung
  • 通讯作者:
    Huang, Hsin-Hsiung
Affine-transformation invariant clustering models
A framework of zero-inflated bayesian negative binomial regression models for spatiotemporal data
Detection of Anomalies in Traffic Flows with Large Amounts of Missing Data
检测具有大量丢失数据的交通流异常
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hsin-Hsiung Huang其他文献

Effective reduction of bowing in free-standing GaN by N-face regrowth with hydride vapor-phase epitaxy
  • DOI:
    10.1016/j.jcrysgro.2009.01.073
  • 发表时间:
    2009-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kuei-Ming Chen;Hsin-Hsiung Huang;Yi-Lin Kuo;Pei-Lun Wu;Ting-Li Chu;Hung-Wei Yu;Wei-I Lee
  • 通讯作者:
    Wei-I Lee
An ensemble distance measure of k-mer and Natural Vector for the phylogenetic analysis of multiple-segmented viruses.
  • DOI:
    10.1016/j.jtbi.2016.03.004
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Hsin-Hsiung Huang
  • 通讯作者:
    Hsin-Hsiung Huang
Information Extraction for Virus Classification and Robust Dimension Reduction
  • DOI:
  • 发表时间:
    2014-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsin-Hsiung Huang
  • 通讯作者:
    Hsin-Hsiung Huang

Hsin-Hsiung Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hsin-Hsiung Huang', 18)}}的其他基金

ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
  • 批准号:
    2318925
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 5.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了