ATD: Collaborative Research: Real-Time Network Pattern Change Detection

ATD:协作研究:实时网络模式变化检测

基本信息

  • 批准号:
    1924859
  • 负责人:
  • 金额:
    $ 4.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The rapidly booming amounts of social networks data from the Internet offers a lot of information to understand human behaviors. First, the networks data contains sparse communication frequencies and some dense clusters, and the clusters change over time, so that feature generation and selection are essential. This research project addresses the statistical challenges for detecting abrupt categories changes in networks. This is important for quantifying human dynamics and accurately identifying unusual events and forecast future threats indicated by those events. Graduate students will be involved in some aspects of the project.This project aims to develop 1) for the static case: we will use zero-inflated or hurdle models to characterize the class link probability. 2) for the dynamic case: the class communication probability is a variable of time, we model the probability by a self-exciting process. 3) we consider the cold-start problem in which the predicted networks vary a lot from the training network, so that there are no enough samples to train classification models. Instead, we will develop matrix-variate clustering and classification models. This project includes several important topics to improve modeling of the network users' categories and identifying efficiently abrupt network pattern changes in real time as well as reducing the influence of outliers. These methods are applicable to various types of networks data such as social networks, biology signals, genome sequences, and so on. The PIs will provide a publicly-available software packages to implement the proposed methods. Additionally, corresponding statistical theories and computational techniques can be extended to advance further research and can be applied to other fields. This project topics cater to the students with hands-on studies in new Big-Data analysis program at the University of Central Florida.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
互联网上迅速增长的大量社交网络数据为理解人类行为提供了大量信息。首先,网络数据包含稀疏的通信频率和一些密集的聚类,并且聚类随着时间的推移而变化,因此特征生成和选择是必不可少的。该研究项目解决了检测网络中突然类别变化的统计挑战。这对于量化人类动态和准确识别异常事件并预测这些事件所表示的未来威胁非常重要。研究生将参与该项目的某些方面。该项目旨在开发1)对于静态情况:我们将使用零膨胀或障碍模型来表征类链接概率。2)对于类间通信概率随时间变化的动态情形,我们用自激过程来描述类间通信概率。3)我们考虑冷启动问题,其中预测网络与训练网络有很大差异,因此没有足够的样本来训练分类模型。相反,我们将开发矩阵变量聚类和分类模型。该项目包括几个重要的主题,以改善网络用户的类别建模和有效地识别突然的网络模式变化在真实的时间,以及减少离群值的影响。这些方法适用于各种类型的网络数据,如社交网络,生物信号,基因组序列等。PI将提供一个公开的软件包来实现所提出的方法。此外,相应的统计理论和计算技术可以扩展到推进进一步的研究,并可以应用到其他领域。这个项目的主题是为了满足学生在中央佛罗里达大学新的大数据分析项目的实践研究。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An R package AZIAD for analysing zero-inflated and zero-altered data
Affine-transformation invariant clustering models
Score-matching representative approach for big data analysis with generalized linear models
  • DOI:
    10.1214/21-ejs1965
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Keren Li;Jie Yang
  • 通讯作者:
    Keren Li;Jie Yang
Smoothing regression and impact measures for accidents of traffic flows
交通流事故的平滑回归和影响措施
  • DOI:
    10.1080/02664763.2023.2175799
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Yu, Zhou;Yang, Jie;Huang, Hsin-Hsiung
  • 通讯作者:
    Huang, Hsin-Hsiung
Identifying zero-inflated distributions with a new R package iZID
使用新的 R 包 iZID 识别零膨胀分布
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Yang其他文献

Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn-Ce/AC catalyst for low-temperature SCR of NO with NH3
探讨Sm和Fe共掺杂对NH3 NO低温SCR用Mn-Ce/AC催化剂抗Pb中毒的影响
  • DOI:
    10.1016/j.fuel.2022.123763
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Mingming Wang;Shan Ren;Yanhua Jiang;Buxin Su;Zhichao Chen;Weizao Liu;Jie Yang;Lin Chen
  • 通讯作者:
    Lin Chen
Bubble plume depths and surface wave development as a control on ambient sound in the ocean
气泡羽流深度和表面波发展作为对海洋环境声音的控制
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jim Thomson;Jie Yang;Robert Taylor;E. Rainville;Kristin Zeiden;Luc Rainville;S. Brenner;Megan S Ballard;Meghan F. Cronin;S. Brenner
  • 通讯作者:
    S. Brenner
Comparison of functional outcomes after retropubic, laparoscopic and robot-assisted radical prostatectomy: A meta-analysis
耻骨后、腹腔镜和机器人辅助根治性前列腺切除术后功能结果的比较:一项荟萃分析
  • DOI:
    10.13105/wjma.v2.i3.107
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Ming;Jie Yang;X. Meng;Sheng Li;Tao Liu;Zhihai Fang;R. Cao;Xing
  • 通讯作者:
    Xing
A 'hermit' shell-dwelling lifrstyle in a Cambrian priapulan worm
寒武纪普里普兰蠕虫中的“隐士”贝壳生活
  • DOI:
    10.1016/j.cub.2021.10.003
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Xiao-yu Yang;Martin R. Smith;Jie Yang;Wei Li;Qing-hao Guo;Chun-li LI;Yu Wang;Xi-guang Zhang
  • 通讯作者:
    Xi-guang Zhang
Magnetism, phase transition, and magnetocaloric effects of Co2Nb0.8Ga1.2 and Co2Nb1.2Ga0.8 Heusler alloys
Co2Nb0.8Ga1.2和Co2Nb1.2Ga0.8 Heusler合金的磁性、相变和磁热效应
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Wang;Yuetong Qian;Litao Yu;Jie Liu;Hongwei Liu;Wenying Yu;Jie Yang;Zhe Li;Yongsheng Liu
  • 通讯作者:
    Yongsheng Liu

Jie Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Yang', 18)}}的其他基金

CNS Core: Small: Towards Ubiquitous Sensing With Commodity Wi-Fi
CNS 核心:小型:利用商用 Wi-Fi 实现无处不在的传感
  • 批准号:
    1910519
  • 财政年份:
    2019
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
EAGER: Exploring the Feasibility of Phoneme Sound Origins to Enhance Mobile Authentication
EAGER:探索音素声音起源增强移动认证的可行性
  • 批准号:
    1835963
  • 财政年份:
    2018
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1514238
  • 财政年份:
    2015
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Continuing Grant
CSR: Medium: Collaborative Research: Guardian Angel---Enabling Mobile Safety Systems
CSR:媒介:协作研究:守护天使——赋能移动安全系统
  • 批准号:
    1505175
  • 财政年份:
    2014
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Distributed Robust Spectrum Sensing and Sharing in Cognitive Radio Networks
NetS:小型:协作研究:认知无线电网络中的分布式鲁棒频谱感知和共享
  • 批准号:
    1464092
  • 财政年份:
    2014
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: Guardian Angel---Enabling Mobile Safety Systems
CSR:媒介:协作研究:守护天使——赋能移动安全系统
  • 批准号:
    1409652
  • 财政年份:
    2014
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Distributed Robust Spectrum Sensing and Sharing in Cognitive Radio Networks
NetS:小型:协作研究:认知无线电网络中的分布式鲁棒频谱感知和共享
  • 批准号:
    1318751
  • 财政年份:
    2013
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 4.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了