Institute for Pure and Applied Mathematics

纯粹与应用数学研究所

基本信息

  • 批准号:
    1925919
  • 负责人:
  • 金额:
    $ 2500万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The mission of the Institute for Pure and Applied Mathematics (IPAM) is to build new inclusive interdisciplinary research communities, to foster the interaction of mathematics with a broad range of science and technology, to promote mathematical innovation, and to engage and transform the world through mathematics. Mathematics is becoming increasingly central to today’s science and technology, with applications as diverse as search engines, cryptography, medical imagining, artificial intelligence, and many others. Future developments, from sustainable energy production to autonomous vehicles, to quantum computers, require further mathematical innovation and application of existing mathematics. IPAM's overall goal is to foster the interaction of mathematicians with doctors, engineers, physical scientists, social scientists, and humanists to enable such future technological and social progress. IPAM fulfills its mission through workshops and long programs that connect mathematics and other disciplines or multiple areas of mathematics. These activities bring in thousands of visitors annually from academia, government, and industry, at all career stages. IPAM also has programs that encourage the inclusion of women and members of minorities underrepresented in the mathematics community, that serve specific needs of government agencies, and that inform the public about the excitement of modern mathematics and the important contributions that have come to society through mathematics. Student-focused programs highlight the value of mathematics degree and the many career paths available to mathematics majors. Through these activities, IPAM serves the national interest. IPAM promotes the progress of science by stimulating the mathematical developments that are needed for this progress; advances the national health, prosperity, and welfare through programs that address current scientific and societal challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纯粹与应用数学研究所(IPAM)的使命是建立新的包容性跨学科研究社区,促进数学与广泛科学技术的互动,促进数学创新,并通过数学参与和改变世界。数学在当今的科学和技术中变得越来越重要,其应用范围广泛,包括搜索引擎、密码学、医学成像、人工智能等。未来的发展,从可持续能源生产到自动驾驶汽车,再到量子计算机,都需要进一步的数学创新和现有数学的应用。 IPAM 的总体目标是促进数学家与医生、工程师、物理科学家、社会科学家和人文主义者的互动,以实现未来的技术和社会进步。 IPAM 通过将数学与其他学科或多个数学领域联系起来的研讨会和长期项目来履行其使命。这些活动每年吸引来自学术界、政府和工业界各个职业阶段的数千名参观者。 IPAM 还制定了一些计划,鼓励女性和少数族裔成员加入数学界,满足政府机构的特定需求,并让公众了解现代数学的兴奋点以及数学对社会的重要贡献。以学生为中心的课程突出了数学学位的价值以及数学专业可用的多种职业道路。通过这些活动,IPAM 服务于国家利益。 IPAM 通过刺激科学进步所需的数学发展来促进科学进步;通过解决当前科学和社会挑战的计划促进国民健康、繁荣和福利。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitri Shlyakhtenko其他文献

GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS OF HOMOGENEOUS STRUCTURES
齐次结构自同构群的群拓扑
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. A. G. Hadernezhad;DE Javier;L. G. Onzalez;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang
  • 通讯作者:
    Ruixiang Zhang
THE NUMBER OF (cid:70) q -POINTS ON DIAGONAL HYPERSURFACES WITH MONOMIAL DEFORMATION
单项变形对角超曲面上 (cid:70) q 点的数量
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. E. M. C. C. Arthy;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang
  • 通讯作者:
    Ruixiang Zhang
Spin Lefschetz fibrations are abundant
自旋莱夫谢茨纤维非常丰富
  • DOI:
    10.2140/pjm.2023.326.1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    M. I. A. Rabadji;R. ˙. N. B. Aykur;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang
  • 通讯作者:
    Ruixiang Zhang

Dimitri Shlyakhtenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitri Shlyakhtenko', 18)}}的其他基金

Free Information Theory Techniques in von Neumann Algebras
冯诺依曼代数中的自由信息理论技术
  • 批准号:
    2348633
  • 财政年份:
    2024
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Free Probability, Transport, and Applications
免费概率、传输和应用
  • 批准号:
    2054450
  • 财政年份:
    2021
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Free Probability and Cohomology in von Neumann Algebra Theory.
冯诺依曼代数理论中的自由概率和上同调。
  • 批准号:
    1762360
  • 财政年份:
    2018
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
IRES Track 1 Graduate Research In Industrial Projects for Students - Berlin
IRES Track 1 学生工业项目研究生研究 - 柏林
  • 批准号:
    1826810
  • 财政年份:
    2018
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Free Gibbs States: Von Neumann Algebras, Random Matrices, and Subfactors
自由吉布斯态:冯诺依曼代数、随机矩阵和子因子
  • 批准号:
    1500035
  • 财政年份:
    2015
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
Research in Industrial Projects for Students (RIPS) - Hong Kong
学生工业项目研究 (RIPS) - 香港
  • 批准号:
    1460018
  • 财政年份:
    2015
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Institute for Pure and Applied Mathematics
纯粹与应用数学研究所
  • 批准号:
    1440415
  • 财政年份:
    2015
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
Free probability techniques: von Neumann algebras, random matrices and subfactors.
免费概率技术:冯诺依曼代数、随机矩阵和子因子。
  • 批准号:
    1161411
  • 财政年份:
    2012
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
Free probability, von Neumann algebras, subfactors and random matrices
自由概率、冯诺依曼代数、子因子和随机矩阵
  • 批准号:
    0900776
  • 财政年份:
    2009
  • 资助金额:
    $ 2500万
  • 项目类别:
    Continuing Grant
EMSW21-RTG Analysis and Applications
EMSW21-RTG分析与应用
  • 批准号:
    0838680
  • 财政年份:
    2009
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant

相似国自然基金

基于SURE/PURE准则的图像盲反卷积算法研究
  • 批准号:
    61401013
  • 批准年份:
    2014
  • 资助金额:
    29.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
  • 批准号:
    2305414
  • 财政年份:
    2023
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
REU: Modern Topics in Pure and Applied Mathematics
REU:纯粹数学和应用数学的现代主题
  • 批准号:
    2149913
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2022-02988
  • 财政年份:
    2022
  • 资助金额:
    $ 2500万
  • 项目类别:
    Discovery Grants Program - Individual
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2017-03720
  • 财政年份:
    2021
  • 资助金额:
    $ 2500万
  • 项目类别:
    Discovery Grants Program - Individual
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2017-03720
  • 财政年份:
    2020
  • 资助金额:
    $ 2500万
  • 项目类别:
    Discovery Grants Program - Individual
REU Site: Pure and Applied Mathematics at UC Davis
REU 网站:加州大学戴维斯分校的纯粹与应用数学
  • 批准号:
    1950928
  • 财政年份:
    2020
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2017-03720
  • 财政年份:
    2019
  • 资助金额:
    $ 2500万
  • 项目类别:
    Discovery Grants Program - Individual
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2017-03720
  • 财政年份:
    2018
  • 资助金额:
    $ 2500万
  • 项目类别:
    Discovery Grants Program - Individual
Pure and Applied Model Theory
纯粹和应用模型理论
  • 批准号:
    1834578
  • 财政年份:
    2018
  • 资助金额:
    $ 2500万
  • 项目类别:
    Standard Grant
Pure and applied problems in metamorphic geology
变质地质学的纯粹问题和应用问题
  • 批准号:
    RGPIN-2017-03720
  • 财政年份:
    2017
  • 资助金额:
    $ 2500万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了