IRES Track 1 Graduate Research In Industrial Projects for Students - Berlin

IRES Track 1 学生工业项目研究生研究 - 柏林

基本信息

  • 批准号:
    1826810
  • 负责人:
  • 金额:
    $ 23.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This project will support the "Graduate-level Research in Industrial Projects for Students-Berlin" (GRIPS) led by the Institute for Pure and Applied Mathematics (IPAM). The program will offer graduate students in mathematics and related disciplines the opportunity to work on industry-sponsored research problems in Berlin through a collaboration with Research Campus MODAL in Berlin, Germany. MODAL has existing industrial partners affiliated with their laboratories that provide their research groups with interesting and challenging research problems. The program will be eight weeks in length; eight US graduate students will participate each summer. Half of the US students each year will be women, and one or more will be a member of an underrepresented ethnic group. MODAL will recruit 8 European students to form 4 research groups of two US and two European students each, and provide academic mentors. The program will not only produce interesting research in applications of mathematics to real-life problems, but will give a diverse group of US students an insight into industrial research and provide them with hands-on experience of working on industrial problems. One of the goals of the program is to make the students aware of the multiple career pathways open to them and highlight the value and adaptability of their mathematics skills as applied to interesting real-life problems. The students will also receive invaluable experience collaborating with foreign colleagues and companies. The projects will be the natural outgrowth of MODAL's existing industry research partnerships, and will be selected in collaboration with IPAM. Participants will produce a final report on their work, and will be encouraged to submit their work for conference presentations and/or publication in technical journals. It is expected that many of the participants will continue the research and collaborations they started in the program.Applied mathematics research has become increasingly important and relevant to engineering problems and, indeed, to everyday life. Increasingly, core applied mathematics topics, ranging from applied probability, to partial differential equation, to optimization, find important applications in areas such as materials science, mathematical biology, operations research, and, more recently, machine learning. Applications of mathematical techniques to real-life problems require both a deep understanding of mathematical theory, as well as acute awareness of both the physical and technical aspects of the problem, as well as implementation details of any numerical algorithms or simulations. For this reason, such successful applications are often a combination of individual and team efforts, with the main problem being divided into more specialized parts, and specific expertise of each team member brought to bear on each such component.The exact topics of the research projects will change from year to year and will depend on the interest of industry and academic researchers involved. Generally speaking, the projects will apply mathematical techniques to questions of optimization (such as optimization of rail network throughput), efficient simulation (such as simulation of modern nanophotonic devices) and machine learning (such as analysis of medical mass data sets).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将支持“学生 - 伯林工业项目的研究生研究”(由纯净和应用数学研究所(IPAM)领导的握把)。该计划将通过与德国柏林的研究校园模态合作,为数学和相关学科的研究生提供有机会在柏林进行行业赞助的研究问题的机会。 Modal的现有工业合作伙伴隶属于其实验室,这些实验室为研究小组提供了有趣且具有挑战性的研究问题。 该计划的长度为八周;每年夏天,八名美国研究生将参加。 每年一半的美国学生将是女性,其中一个或多个将是代表人数不足的族裔的成员。 MODAL将招募8位欧洲学生组成4个由美国和两个欧洲学生组成的研究小组,并提供学术导师。该计划不仅将在数学到现实生活中的应用中进行有趣的研究,而且还将使我们各种各样的学生了解工业研究,并为他们提供有关工业问题的动手经验。该计划的目标之一是使学生意识到对他们开放的多种职业途径,并突出其数学技能的价值和适应性,以应用于有趣的现实生活中。 学生还将获得与外国同事和公司合作的宝贵经验。这些项目将是Modal现有行业研究合作伙伴关系的自然产物,并将与IPAM合作选择。 参与者将为他们的工作提供最终报告,并鼓励他们在技术期刊上提交会议演讲和/或出版的作品。 预计许多参与者将继续他们在该计划中启动的研究和合作。应用数学研究变得越来越重要,并且与工程问题以及与日常生活有关。核心应用数学主题越来越多,从应用概率到部分微分方程,到优化,在材料科学,数学生物学,运营研究以及最近的机器学习等领域中找到重要应用。数学技术在现实生活问题上的应用既需要对数学理论的深入了解,又需要对问题的物理和技术方面的急剧认识,以及任何数值算法或模拟的实施细节。因此,这种成功的应用通常是个人和团队努力的结合,主要问题分为更专业的零件,并且每个团队成员都对每个这样的组成部分进行了具体的专业知识。研究项目的确切主题每年都会改变,并取决于行业和学术研究人员的利益。 一般而言,这些项目将将数学技术应用于优化问题(例如对铁路网络吞吐量的优化),有效的模拟(例如对现代纳米光量设备的模拟)和机器学习(例如对医学质量数据集的分析)。本奖颁奖典礼反映了NSF的法定任务,并通过使用基金会的智力效果和广泛的评估来评估支持,并被视为值得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitri Shlyakhtenko其他文献

GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS OF HOMOGENEOUS STRUCTURES
齐次结构自同构群的群拓扑
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. A. G. Hadernezhad;DE Javier;L. G. Onzalez;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang
  • 通讯作者:
    Ruixiang Zhang
THE NUMBER OF (cid:70) q -POINTS ON DIAGONAL HYPERSURFACES WITH MONOMIAL DEFORMATION
单项变形对角超曲面上 (cid:70) q 点的数量
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. E. M. C. C. Arthy;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang
  • 通讯作者:
    Ruixiang Zhang
Spin Lefschetz fibrations are abundant
自旋莱夫谢茨纤维非常丰富
  • DOI:
    10.2140/pjm.2023.326.1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    M. I. A. Rabadji;R. ˙. N. B. Aykur;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang
  • 通讯作者:
    Ruixiang Zhang

Dimitri Shlyakhtenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitri Shlyakhtenko', 18)}}的其他基金

Free Information Theory Techniques in von Neumann Algebras
冯诺依曼代数中的自由信息理论技术
  • 批准号:
    2348633
  • 财政年份:
    2024
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Standard Grant
Free Probability, Transport, and Applications
免费概率、传输和应用
  • 批准号:
    2054450
  • 财政年份:
    2021
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Standard Grant
Institute for Pure and Applied Mathematics
纯粹与应用数学研究所
  • 批准号:
    1925919
  • 财政年份:
    2020
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Continuing Grant
Free Probability and Cohomology in von Neumann Algebra Theory.
冯诺依曼代数理论中的自由概率和上同调。
  • 批准号:
    1762360
  • 财政年份:
    2018
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Continuing Grant
Free Gibbs States: Von Neumann Algebras, Random Matrices, and Subfactors
自由吉布斯态:冯诺依曼代数、随机矩阵和子因子
  • 批准号:
    1500035
  • 财政年份:
    2015
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Continuing Grant
Research in Industrial Projects for Students (RIPS) - Hong Kong
学生工业项目研究 (RIPS) - 香港
  • 批准号:
    1460018
  • 财政年份:
    2015
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Standard Grant
Institute for Pure and Applied Mathematics
纯粹与应用数学研究所
  • 批准号:
    1440415
  • 财政年份:
    2015
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Continuing Grant
Free probability techniques: von Neumann algebras, random matrices and subfactors.
免费概率技术:冯诺依曼代数、随机矩阵和子因子。
  • 批准号:
    1161411
  • 财政年份:
    2012
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Continuing Grant
Free probability, von Neumann algebras, subfactors and random matrices
自由概率、冯诺依曼代数、子因子和随机矩阵
  • 批准号:
    0900776
  • 财政年份:
    2009
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Continuing Grant
EMSW21-RTG Analysis and Applications
EMSW21-RTG分析与应用
  • 批准号:
    0838680
  • 财政年份:
    2009
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Standard Grant

相似国自然基金

大学毕业生入职后政治技能的动态发展及其提升机制:一项多视角的追踪研究
  • 批准号:
    72162023
  • 批准年份:
    2021
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
博士毕业生的初职获得与早期生涯发展追踪研究
  • 批准号:
    71974004
  • 批准年份:
    2019
  • 资助金额:
    43 万元
  • 项目类别:
    面上项目
高等教育增值与毕业生就业之间的关系——基于教育经济学的理论分析与实证检验
  • 批准号:
    71673097
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
大学生毕业前后生涯适应的追踪、Agent模拟和干预研究
  • 批准号:
    71171020
  • 批准年份:
    2011
  • 资助金额:
    43.0 万元
  • 项目类别:
    面上项目
大学毕业生入职后政治技能的发展及其影响:一项追踪研究
  • 批准号:
    70802060
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

IRES Track 1: Soft Matter Research Experience for North Carolina Graduate Students in Dresden
IRES 轨道 1:北卡罗来纳州研究生在德累斯顿的软物质研究体验
  • 批准号:
    2246371
  • 财政年份:
    2023
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Standard Grant
IRES Track I: A U.S.-Ireland Partnership for an International Graduate Research Experience in Biopharmaceutical Processing
IRES 第一轨:美国-爱尔兰合作伙伴关系,提供生物制药加工方面的国际研究生研究经验
  • 批准号:
    2107401
  • 财政年份:
    2021
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Standard Grant
IRES Track II: A Unique Opportunity for Graduate Training in Tropical Biodiversity Science
IRES Track II:热带生物多样性科学研究生培训的独特机会
  • 批准号:
    1855005
  • 财政年份:
    2019
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Standard Grant
IRES Track II/Collaborative Research: PREEMPTIVE Multidisciplinary Natural Hazards Engineering Institute Series for Advanced Graduate Students
IRES Track II/合作研究:面向高级研究生的先发制人的多学科自然灾害工程学院系列
  • 批准号:
    1829085
  • 财政年份:
    2018
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Standard Grant
IRES Track III: Global Engineering Education Exchange Graduate International Research Experiences (Global E? GIRE)
IRES Track III:全球工程教育交流研究生国际研究经验(Global E?GIRE)
  • 批准号:
    1829436
  • 财政年份:
    2018
  • 资助金额:
    $ 23.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了