Classification of nilpotent associative algebras and coclass theory
幂零结合代数的分类和余类理论
基本信息
- 批准号:239393291
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Associative algebras arise naturally in various areas of mathematics. For example, they play a role in representation theory and in cohomology; they arise as universal enveloping algebras in Lie theory, or as group algebras in group theory. Our central aim is to develop effective algorithms for the classification, construction and enumeration of finite dimensional nilpotent associative algebras. We first use the dimension as primary invariant and develop effective algorithms to construct or enumerate the isomorphism types of nilpotent associative algebras of a given dimension over a single finite field. We then extend our results to cover all finite fields and we consider the case of infinite fields. Coclass theory has been a highly successful tool in the classification of finite nilpotent groups. We translate the central ideas of coclass theory to finite dimensional nilpotent associative algebras and then develop algorithms to classify and investigate finite dimensional nilpotent associative algebras by coclass. The results of this research will yield significant new insights into the structure of nilpotent associative algebras.
结合代数自然地出现在数学的各个领域。例如,它们在表示论和上同调中发挥作用;它们在李理论中作为泛包络代数出现,或者在群论中作为群代数出现。我们的中心目标是发展有效的算法的分类,建设和计数的有限维幂零结合代数。首先,我们使用的维数作为主要的不变量,并制定有效的算法来构造或枚举同构类型的幂零结合代数的一个给定的维在一个单一的有限域。然后,我们扩展我们的结果,以涵盖所有的有限域,我们认为无限域的情况下。Coclass理论在有限幂零群的分类中是一个非常成功的工具。我们将coclass理论的中心思想转化到有限维幂零结合代数上,然后利用coclass给出了有限维幂零结合代数的分类和研究算法。这一研究结果将对幂零结合代数的结构产生重要的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Bettina Eick其他文献
Professorin Dr. Bettina Eick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Bettina Eick', 18)}}的其他基金
Groups of prime-power order and coclass theory
素幂阶群和余类理论
- 批准号:
386837064 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Applications of cohomology in group theory and number theory
上同调在群论和数论中的应用
- 批准号:
171126687 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
The conjugacy problem and groups of automorphisms
共轭问题和自同构群
- 批准号:
535115960 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
LEAPS-MPS: Functional Identities, Nilpotent Rings, and Garside Shadows
LEAPS-MPS:功能恒等式、幂零环和 Garside Shadows
- 批准号:
2316995 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Nilpotent singularities in positive characteristic
正特征的幂零奇点
- 批准号:
2601034 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Nilpotent study of 3-dimensional topology
3 维拓扑的幂零研究
- 批准号:
20K03605 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computing with Lie groups and algebras: nilpotent orbits and applications
使用李群和代数进行计算:幂零轨道和应用
- 批准号:
DP190100317 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Projects
Non-nilpotent matrix spaces over finite fields
有限域上的非幂零矩阵空间
- 批准号:
538285-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Density Theorems of Closed Geodesics for Nilpotent Extensions and Asymptotics of Heat Kernels
幂零扩张的闭测地线的密度定理和热核的渐进性
- 批准号:
18K03282 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parabolic conjugation on nilpotent elements for classical Lie types
经典李类型的幂零元的抛物线共轭
- 批准号:
409550143 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Fellowships
Isoperimetric functions of nilpotent Lie groups
幂零李群的等周函数
- 批准号:
392328321 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Fellowships
Characterization of the Closure of Nilpotent Operators and Normal Operator Similarity Orbits
幂零算子和正规算子相似轨道闭包的表征
- 批准号:
475008-2015 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Nilpotent subgroup complexes of finite groups and associated quiver representations
有限群的幂零子群复形及相关箭袋表示
- 批准号:
17K05161 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)