The conjugacy problem and groups of automorphisms

共轭问题和自同构群

基本信息

项目摘要

The conjugacy problem is one of the fundamental problems in group theory. It was stated in 1911 by Dehn as one of three major problems along with the word problem and the isomorphism problem. In recent years it became very popular due to the AAG cryptosystem that requires groups with hard conjugacy problem. The investigation of certain types of groups and their conjugacy problem has therefore become an important task in group theory. In this project the conjugacy problem is investigated in three types of groups: subgroups of integral matrix groups, automorphism groups of torsion free finitely generated nilpotent groups and automorphism groups of finitely generated free groups. The conjugacy problem in the full general linear group over the integers GL(n,Z) was solved by Grunewald (1980) and practical methods for this problem were developed by Eick, Hofmann and O'Brien (2019) and by Bley, Hofmann and Johnston (2022). The conjugacy problem for subgroups of GL(n,Z) is open and it is our plan to consider this for certain cases. Torsion free finitely generated nilpotent groups have a well developed algorithmic theory and there are effective methods available to solve their conjugacy problem. However, their automorphism groups are a different case and their conjugacy problem is wide open. We will consider different approaches towards solving this conjugacy problem. Finitely generated free groups have been investigated for a long time and their conjugacy problem can be solved readily. Again, this is very different for their automorphism groups. Bogopolski (1889) has described a solution for automorphism groups of free groups on two generators. It is our aim to consider this problem further.
共轭问题是群论中的基本问题之一。1911年,Dehn将其与词问题和同构问题并列为三大问题之一。近年来,由于AAG密码体制要求群具有难共轭问题,它变得非常流行。因此,研究某些类型的群及其共轭问题已成为群论中的一个重要任务。本文研究了三类群的共轭问题:整矩阵群的子群、无挠有限生成幂零群的自同构群和有限生成自由群的自同构群。Grunewald(1980)解决了整数GL(n,Z)上全一般线性群的共轭问题,Eick,Hofmann和O‘Brien(2019)以及Bley,Hofmann和Johnston(2022)发展了解决这一问题的实用方法。GL(n,Z)的子群的共轭问题是公开的,我们计划在某些情况下考虑这一问题。无挠有限生成的幂零群有很好的算法理论,并且有有效的方法来解决它们的共轭问题。然而,它们的自同构群是另一种情况,它们的共轭问题是完全公开的。我们将考虑不同的方法来解决这个共轭问题。有限生成自由群的研究由来已久,它们的共轭问题可以很容易地解决。同样,这对于他们的自同构群来说是非常不同的。Bogopolski(1889)描述了两个生成元上自由群的自同构群的一个解决方案。我们的目标是进一步考虑这个问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Bettina Eick其他文献

Professorin Dr. Bettina Eick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Bettina Eick', 18)}}的其他基金

Groups of prime-power order and coclass theory
素幂阶群和余类理论
  • 批准号:
    386837064
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Classification of nilpotent associative algebras and coclass theory
幂零结合代数的分类和余类理论
  • 批准号:
    239393291
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Applications of cohomology in group theory and number theory
上同调在群论和数论中的应用
  • 批准号:
    171126687
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

流体湍流运动的相关数学分析
  • 批准号:
    10971174
  • 批准年份:
    2009
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
不可压流体力学方程中的一些问题
  • 批准号:
    10771177
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目
N-体问题的中心构型及动力系统的分支理论
  • 批准号:
    10601071
  • 批准年份:
    2006
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Share plus: Continuous Glucose Monitoring with Data Sharing in Older Adults with T1D and Their Care Partners
分享加:患有 T1D 的老年人及其护理伙伴的持续血糖监测和数据共享
  • 批准号:
    10660793
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Meharry Cancer Summer Research Program (SuRP)
梅哈里癌症夏季研究计划 (SuRP)
  • 批准号:
    10715291
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Food-Body-Mind Intervention: Promote whole child health
食身心干预:促进儿童整体健康
  • 批准号:
    10731251
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
StuDy AimED at Increasing AlCohol AbsTinEnce (DEDICATE)
旨在提高酒精戒断率的研究(奉献)
  • 批准号:
    10577022
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multisensory Augmented Reality as a bridge to audio-only accommodations for inclusive STEM interactive digital media
多感官增强现实作为包容性 STEM 交互式数字媒体的纯音频住宿的桥梁
  • 批准号:
    10693600
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving Care Transitions and Self-care among Informal Caregivers of Hospitalized Older Adults through Digital Tools
通过数字工具改善住院老年人的非正式护理人员的护理过渡和自我护理
  • 批准号:
    10717633
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying the Effects of Race-Related Stressors on Laboratory- Induced Stress and Craving among African Americans with Alcohol Use Disorder
确定种族相关压力源对患有酒精使用障碍的非裔美国人实验室诱发的压力和渴望的影响
  • 批准号:
    10664454
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Brain Development after Early-Life Antipsychotic Treatment
早期抗精神病治疗后的大脑发育
  • 批准号:
    10629613
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Recovery Bridge: A Peer Facilitated Intervention to help bridge the transition from psychiatric inpatient hospitalization to living in the community
康复桥梁:同伴协助干预,帮助弥合从精神病住院到社区生活的过渡
  • 批准号:
    10637987
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Application of the Telemedicine for Reach, Education, Access, and Treatment delivery model to engage emerging adults in Diabetes Self-Management Education and Support (TREAT-ED)
应用远程医疗覆盖、教育、获取和治疗提供模式,让新兴成年人参与糖尿病自我管理教育和支持 (TREAT-ED)
  • 批准号:
    10651947
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了