FW-HTF-RL: Collaborative Research: Enabling Marginalized Rural and Urban Digital Workers to Collaborate with AI to Learn Skills, Increase Wages, and Access Creative Work
FW-HTF-RL:合作研究:让边缘化的农村和城市数字工人能够与人工智能合作学习技能、增加工资并获得创造性工作
基本信息
- 批准号:1928507
- 负责人:
- 金额:$ 36.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many rural areas in the United States face a lack of economic opportunity. The future of work can bring opportunities for rural and urban marginalized communities through online work and the gig economy. However, work on current platforms is often low-level labeling work offering few opportunities for advancement. It is often intended to train Artificial Intelligence to automate this work away, instead of training workers. The proposed project aims to uplift workers and improve the marketplace for online work so that digital work may help with the economic recovery of regions whose traditional industries have left. This project aims to develop sustainable methods for transitioning workers to high-skilled and creative digital jobs that are unlikely to be automated in the near to medium term future. Crowd work can be transformed to not only improve the work product for the employer, but also to help the worker move along the career paths necessary for the future of work. The project team from four universities, Carnegie Mellon U., West Virginia U., Pennsylvania State University and University of Pennsylvania has partnered with local institutions to provide workers training to perform progressively more advanced digital work, while earning money. The vision of the project is to scaffold workers through basic computer fluency, working with AI tools, and finally innovation and creativity skills. This work is in collaboration with a rural partner (Rupert Public Library, in Rupert, WV) and urban partner (CommunityForge in Wilkinsburg, PA) and also benefits from a partnership with Bosch Inc. in Pittsburgh, ConservationX Labs in Washington DC, and the State of West Virginia.The proposed research addresses a fundamental challenge in that those who most need to develop skills to gain higher paying jobs cannot afford the unpaid time spent in training needed to develop them. Accomplishing this vision will require solving the following core research questions: (i) How can one best support the marginalized workers in their transition to online work?, (ii) How can Artificial Intelliegnce tools augment workers, rather than displace them?, (iii) How can tools be designed to help workers build skills and creativity for work that is unlikely to be automated in the future?. This project has the potential to make advances across a variety of interrelated fields including crowdsourcing, Artificial Intelligence, Human Computer Interaction, Cognitive Science, Learning Science, Sociology and Economics. Simultaneously enabling both improved work outcomes as well as skill development in crowd work will require the development of models of workers, skills, and their trajectories at a more nuanced level. Enabling workers to collaborate with Artificial Intelligence will require new human-computer interaction paradigms. Supporting creativity and the development of new skills will require the exploration of new organization and coordination structures. By grounding the investigations in real world contexts, the research aims for generalizable knowledge that can lay a foundation for research on the future of crowd work at the human-AI frontierThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国许多农村地区面临着缺乏经济机会的问题。未来的工作可以通过在线工作和零工经济为农村和城市边缘社区带来机会。然而,当前平台上的工作通常是低级别的标签工作,几乎没有晋升机会。它通常是为了训练人工智能来自动化这项工作,而不是训练工人。拟议中的项目旨在提升工人的地位,改善在线工作市场,从而使数字工作有助于传统工业消失的地区的经济复苏。该项目旨在开发可持续的方法,将工人转变为高技能和创造性的数字工作,这些工作在近期到中期不太可能实现自动化。群体性工作不仅可以改善雇主的工作成果,还可以帮助员工沿着未来工作所需的职业道路前进。来自卡内基梅隆大学、西弗吉尼亚大学、宾夕法尼亚州立大学和宾夕法尼亚大学四所大学的项目团队与当地机构合作,为工人提供培训,让他们在赚钱的同时逐步完成更高级的数字工作。该项目的愿景是通过基本的计算机熟练程度,使用人工智能工具,最终培养员工的创新和创造技能。这项工作是与农村合作伙伴(鲁珀特公共图书馆,在鲁珀特,西维吉尼亚州)和城市合作伙伴(社区forge在威尔金斯堡,宾夕法尼亚州),也受益于合作伙伴关系,博世公司在匹兹堡,华盛顿特区的ConservationX实验室和西弗吉尼亚州。拟议的研究解决了一个根本性的挑战,即那些最需要培养技能以获得高薪工作的人,负担不起培养技能所需的无偿培训时间。实现这一愿景需要解决以下核心研究问题:(i)如何才能最好地支持边缘化工人向在线工作过渡?(ii)人工智能工具如何增强而不是取代工人?(iii)如何设计工具来帮助工人为未来不太可能自动化的工作培养技能和创造力?这个项目有潜力在各种相关领域取得进展,包括众包、人工智能、人机交互、认知科学、学习科学、社会学和经济学。同时,为了在群体工作中提高工作成果和技能发展,需要在更细微的层面上开发工人、技能和他们的轨迹模型。使工人能够与人工智能协作将需要新的人机交互范式。支持创造力和新技能的发展需要探索新的组织和协调结构。通过在现实世界背景下进行调查,该研究旨在获得可推广的知识,为人类-人工智能前沿人群工作的未来研究奠定基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Digital Storytelling for Developing Computer Skills in Rural Appalachia
通过数字故事讲述阿巴拉契亚农村地区的计算机技能发展
- DOI:10.1145/3555621
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Jonas, Rebecca M.;Hanrahan, Benjamin V.
- 通讯作者:Hanrahan, Benjamin V.
The Challenges of Crowd Workers in Rural and Urban America
- DOI:10.1609/hcomp.v8i1.7475
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Claudia Flores-Saviaga;Yuwen Li;Benjamin V. Hanrahan;Jeffrey P. Bigham;Saiph Savage
- 通讯作者:Claudia Flores-Saviaga;Yuwen Li;Benjamin V. Hanrahan;Jeffrey P. Bigham;Saiph Savage
Reciprocal Research: Providing Value in Design Research from the Outset in the Rural United States
互惠研究:从一开始就为美国农村的设计研究提供价值
- DOI:10.1145/3392561.3397585
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Hanrahan, Benjamin V.;Ma, Ning F.;Betanzos, Eber;Savage, Saiph
- 通讯作者:Savage, Saiph
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelley Cotter其他文献
SAFE FROM “HARM”: THE GOVERNANCE OF VIOLENCE BY PLATFORMS
远离“伤害”:平台治理暴力
- DOI:
10.5210/spir.v2021i0.12160 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. DeCook;Kelley Cotter;Shaheen Kanthawala - 通讯作者:
Shaheen Kanthawala
Technology is a wish your heart makes: How Disney harnesses practical magic discourse to legitimize MyMagic+
技术是你内心的愿望:迪士尼如何利用实用的魔法话语使 MyMagic 合法化
- DOI:
10.1177/14614448241230923 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kelley Cotter;Priya C. Kumar;Ankolika De;Ryan Tan - 通讯作者:
Ryan Tan
"We happen to be different and different is not bad": Designing for Intersectional Fat-Positive Information-Seeking
“我们碰巧是不同的,不同并不坏”:交叉脂肪正信息寻求设计
- DOI:
10.1145/3613904.3642599 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rebecca M. Jonas;Ankolika De;Kelley Cotter - 通讯作者:
Kelley Cotter
"I Got Flagged for Supposed Bullying, Even Though It Was in Response to Someone Harassing Me About My Disability.": A Study of Blind TikTokers' Content Moderation Experiences
“我被标记为所谓的欺凌行为,尽管这是为了回应有人因我的残疾而骚扰我。”:对盲人 TikTok 用户内容审核体验的研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yao Lyu;Jie Cai;Anisa Callis;Kelley Cotter;John M. Carroll - 通讯作者:
John M. Carroll
“Reach the right people”: The politics of “interests” in Facebook’s classification system for ad targeting
“接触合适的人”:Facebook 广告定位分类系统中的“利益”政治
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:8.5
- 作者:
Kelley Cotter;M. Medeiros;Chankyung Pak;Kjerstin Thorson - 通讯作者:
Kjerstin Thorson
Kelley Cotter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelley Cotter', 18)}}的其他基金
Collaborative Research: IIS: HCC: Small: The New Gatekeepers: Content Moderation and Information Threats in Local Communities
协作研究:IIS:HCC:小型:新的看门人:当地社区的内容审核和信息威胁
- 批准号:
2207835 - 财政年份:2022
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
相似国自然基金
转HTFα对脊髓继发性损伤和微循环重建的影响
- 批准号:39970755
- 批准年份:1999
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
- 批准号:
2326270 - 财政年份:2024
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326407 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326408 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
- 批准号:
2326146 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326169 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
- 批准号:
2326186 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
- 批准号:
2326187 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326194 - 财政年份:2023
- 资助金额:
$ 36.71万 - 项目类别:
Standard Grant