SaTC: CORE: Medium: Protecting Confidentiality and Integrity of Deep Neural Networks against Side-Channel and Fault Attacks

SaTC:核心:中:保护深度神经网络的机密性和完整性免受侧通道和故障攻击

基本信息

  • 批准号:
    1929300
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Deep learning (DL) has become a foundational means for solving diverse problems ranging from computer vision, natural language processing, digital surveillance to finance and healthcare. Security of the deep neural network (DNN) inference engines and trained DNN models on various platforms have become one of the biggest challenges in deploying artificial intelligence. Confidentiality breaches of the DNN model can facilitate manipulations of the DNN inference, resulting in potentially devastating consequences. This project aims to promote broader applications of DNNs in security-critical scenarios by ensuring secure execution of DNN inference engines against side-channel and fault injection attacks.The project is composed of three salient and interdependent thrusts. SpyNet will study vulnerability of DNNs implemented on mainstream platforms to model reverse engineering via passive side-channel attacks. DisruptNet will investigate the feasibility of active fault injection attacks to disrupt execution of DNN inference engines, and SecureNet will identify protection, detection, and hardening mechanisms for secure execution of DNN inference engines. This project may deepen the understanding of inherent information leakage and fault tolerance of DNN models. The unprecedented rise of DL technology in diverse application domains has rendered secure execution, primarily confidentiality and integrity, a top priority. This project significantly advances the state-of-the-art on DL implementations, computer architecture and heterogeneous systems, hardware security, and formal methods/verification. Research results and insights on secure DNN design techniques will be incorporated into courses developed by the researchers. The interdisciplinary research will provide unique training and opportunities for graduate and undergraduate students, and industry partners through a newly established Industry-University Collaborative Research Center. The project will leverage the Experiential Education model of Northeastern University to engage undergraduates, women, and minority students in independent research projects.All the attack library, metrics, methodologies, and software tools will be made available to the public on a dedicated project Website (https://tescase.coe.neu.edu), and the protected and hardened DL models will be released to GitHub to facilitate community usage. The repository will be maintained during and beyond the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习(DL)已成为解决从计算机视觉,自然语言处理,数字监视到融资和医疗保健等多种问题的基础手段。深度神经网络(DNN)推理引擎和经过训练的DNN模型的安全性已成为部署人工智能的最大挑战之一。 DNN模型的机密性漏洞可以促进对DNN推断的操纵,从而导致潜在的毁灭性后果。该项目旨在通过确保安全执行DNN推理引擎针对侧通道和故障注射攻击来促进DNN在安全至关重要方案中的更广泛应用。该项目由三个明显和相互依存的推力组成。 Spynet将研究主流平台上实施的DNN的脆弱性,以通过被动侧通道攻击对反向工程进行建模。 Insuptnet将调查主动故障注入攻击以破坏DNN推理引擎执行的可行性,SecureNet将确定保护,检测和硬化机制,以固定DNN推理引擎的执行。该项目可以加深对DNN模型固有信息泄漏和容错性的理解。 DL技术在各种应用领域的前所未有的崛起已使安全执行,主要是机密性和完整性,这是当务之急。该项目在DL实现,计算机架构和异构系统,硬件安全性以及正式方法/验证方面大大提高了最先进的方法。对安全DNN设计技术的研究结果和见解将纳入研究人员开发的课程中。跨学科研究将通过新成立的行业大学合作研究中心为研究生和本科生提供独特的培训和机会。该项目将利用东北大学的经验教育模型参与独立研究项目的本科生,妇女和少数族裔学生。所有攻击库,指标,方法和软件工具将在DeDicated Project网站(https://tescase.coe.neu.edu)上向公众提供,并将被释放到fatecity dl dl dl dl dl dl。该存储库将在项目期间和之外维护。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评论标准来评估值得支持的。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characteristic Examples: High-Robustness, Low-Transferability Fingerprinting of Neural Networks
  • DOI:
    10.24963/ijcai.2021/80
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siyue Wang;Xiao Wang;Pin-Yu Chen;Pu Zhao;Xue Lin
  • 通讯作者:
    Siyue Wang;Xiao Wang;Pin-Yu Chen;Pu Zhao;Xue Lin
High-Robustness, Low-Transferability Fingerprinting of Neural Networks
  • DOI:
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siyue Wang;Xiao Wang;Pin-Yu Chen;Pu Zhao;Xue Lin
  • 通讯作者:
    Siyue Wang;Xiao Wang;Pin-Yu Chen;Pu Zhao;Xue Lin
Stealthy-Shutdown: Practical Remote Power Attacks in Multi - Tenant FPGAs
隐形关闭:多租户 FPGA 中的实用远程电源攻击
EMShepherd: Detecting Adversarial Samples via Side-channel Leakage
BLCR: Towards Real-time DNN Execution with Block-based Reweighted Pruning
  • DOI:
    10.1109/isqed54688.2022.9806237
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaolong Ma;Geng Yuan;Z. Li;Yifan Gong;Tianyun Zhang;Wei Niu;Zheng Zhan;Pu Zhao;Ning Liu;Jian Tang;Xue Lin;Bin Ren;Yanzhi Wang
  • 通讯作者:
    Xiaolong Ma;Geng Yuan;Z. Li;Yifan Gong;Tianyun Zhang;Wei Niu;Zheng Zhan;Pu Zhao;Ning Liu;Jian Tang;Xue Lin;Bin Ren;Yanzhi Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunsi Fei其他文献

Orchestrating Horizontal Parallelism and Vertical Instruction Packing of Programs to Improve System Overall Efficiency
编排程序的水平并行性和垂直指令打包,以提高系统整体效率
  • DOI:
    10.1109/tc.2009.41
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hai Lin;Yunsi Fei
  • 通讯作者:
    Yunsi Fei
A novel multi-objective instruction synthesis flow for application-specific instruction set processors
用于特定应用指令集处理器的新颖的多目标指令合成流程
  • DOI:
    10.1145/1785481.1785576
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hai Lin;Yunsi Fei
  • 通讯作者:
    Yunsi Fei
Towards secure cryptographic software implementation against side-channel power analysis attacks
针对侧信道功率分析攻击的安全加密软件实施
DeepStrike: Remotely-Guided Fault Injection Attacks on DNN Accelerator in Cloud-FPGA
DeepStrike:对 Cloud-FPGA 中的 DNN 加速器进行远程引导故障注入攻击
MemPoline: Mitigating Memory-based Side-Channel Attacks through Memory Access Obfuscation
MemPoline:通过内存访问混淆减轻基于内存的侧通道攻击

Yunsi Fei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunsi Fei', 18)}}的其他基金

EAGER: Side Channels Go Deep - Leveraging Deep Learning for Side-channel Analysis and Protection
EAGER:侧信道深入——利用深度学习进行侧信道分析和保护
  • 批准号:
    2212010
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Phase I IUCRC Northeastern University: Center for Hardware and Embedded System Security and Trust (CHEST)
第一阶段IUCRC东北大学:硬件和嵌入式系统安全与信任中心(CHEST)
  • 批准号:
    1916762
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Planning IUCRC Northeastern University: Center for Hardware and Embedded System Security and Trust (CHEST)
规划 IUCCRC 东北大学:硬件和嵌入式系统安全与信任中心 (CHEST)
  • 批准号:
    1747748
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
TWC: Medium: Automating Countermeasures and Security Evaluation Against Software Side-channel Attacks
TWC:中:针对软件旁路攻击的自动化对策和安全评估
  • 批准号:
    1563697
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
TWC: Medium: Collaborative: A Unified Statistics-Based Framework for Side-Channel Attack Analysis and Security Evaluation of Cryptosystems
TWC:媒介:协作:基于统计的统一框架,用于密码系统的侧通道攻击分析和安全评估
  • 批准号:
    1314655
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
MRI: Development of a Testbed for Side Channel Analysis and Security Evaluation (TeSCASE)
MRI:开发侧通道分析和安全评估测试台 (TeSCASE)
  • 批准号:
    1337854
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
A Multi-level/multi-faceted Framework for Energy-efficient Application-Specific Instruction Set Processor Synthesis
节能型专用指令集处理器综合的多层次/多方面框架
  • 批准号:
    0541102
  • 财政年份:
    2006
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant

相似国自然基金

中等质量丰中子核区的新核结构模型方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
伏隔核D1/D2共表达中等多棘神经元在孤独症小鼠社交奖赏障碍中的作用及机制研究
  • 批准号:
    81901381
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
星系中心的中等质量黑洞研究
  • 批准号:
    11473062
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
过渡区中等质量原子核结构的配对壳模型研究
  • 批准号:
    11305101
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
中等和大质量黑洞的潮汐瓦解及其吸积与辐射
  • 批准号:
    10873015
  • 批准年份:
    2008
  • 资助金额:
    42.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Increasing user autonomy and advertiser and platform responsibility in online advertising
SaTC:核心:中:增加在线广告中的用户自主权以及广告商和平台责任
  • 批准号:
    2318290
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
  • 批准号:
    2334148
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了