SaTC: CORE: Medium: Protecting Confidentiality and Integrity of Deep Neural Networks against Side-Channel and Fault Attacks

SaTC:核心:中:保护深度神经网络的机密性和完整性免受侧通道和故障攻击

基本信息

  • 批准号:
    1929300
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Deep learning (DL) has become a foundational means for solving diverse problems ranging from computer vision, natural language processing, digital surveillance to finance and healthcare. Security of the deep neural network (DNN) inference engines and trained DNN models on various platforms have become one of the biggest challenges in deploying artificial intelligence. Confidentiality breaches of the DNN model can facilitate manipulations of the DNN inference, resulting in potentially devastating consequences. This project aims to promote broader applications of DNNs in security-critical scenarios by ensuring secure execution of DNN inference engines against side-channel and fault injection attacks.The project is composed of three salient and interdependent thrusts. SpyNet will study vulnerability of DNNs implemented on mainstream platforms to model reverse engineering via passive side-channel attacks. DisruptNet will investigate the feasibility of active fault injection attacks to disrupt execution of DNN inference engines, and SecureNet will identify protection, detection, and hardening mechanisms for secure execution of DNN inference engines. This project may deepen the understanding of inherent information leakage and fault tolerance of DNN models. The unprecedented rise of DL technology in diverse application domains has rendered secure execution, primarily confidentiality and integrity, a top priority. This project significantly advances the state-of-the-art on DL implementations, computer architecture and heterogeneous systems, hardware security, and formal methods/verification. Research results and insights on secure DNN design techniques will be incorporated into courses developed by the researchers. The interdisciplinary research will provide unique training and opportunities for graduate and undergraduate students, and industry partners through a newly established Industry-University Collaborative Research Center. The project will leverage the Experiential Education model of Northeastern University to engage undergraduates, women, and minority students in independent research projects.All the attack library, metrics, methodologies, and software tools will be made available to the public on a dedicated project Website (https://tescase.coe.neu.edu), and the protected and hardened DL models will be released to GitHub to facilitate community usage. The repository will be maintained during and beyond the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习(DL)已成为解决从计算机视觉、自然语言处理、数字监控到金融和医疗保健等各种问题的基本手段。深度神经网络(DNN)推理引擎和各种平台上训练的DNN模型的安全性已成为部署人工智能的最大挑战之一。DNN模型的机密性破坏可以促进DNN推理的操纵,从而导致潜在的破坏性后果。该项目旨在通过确保DNN推理引擎的安全执行来防止侧信道和故障注入攻击,从而促进DNN在安全关键场景中的更广泛应用。该项目由三个突出且相互依赖的目标组成。SpyNet将研究在主流平台上实现的DNN的脆弱性,以通过被动侧信道攻击来模拟逆向工程。DisruptNet将研究主动故障注入攻击破坏DNN推理引擎执行的可行性,SecureNet将确定DNN推理引擎安全执行的保护,检测和强化机制。该项目可以加深对DNN模型固有的信息泄漏和容错的理解。DL技术在不同应用领域的空前崛起,使得安全执行(主要是机密性和完整性)成为重中之重。该项目显著推进了DL实现,计算机体系结构和异构系统,硬件安全和形式化方法/验证的最新技术。安全DNN设计技术的研究成果和见解将被纳入研究人员开发的课程中。跨学科研究将通过新成立的产学合作研究中心为研究生和本科生以及行业合作伙伴提供独特的培训和机会。该项目将利用东北大学的体验式教育模式,吸引本科生、女性和少数民族学生参与独立的研究项目。所有的攻击库、指标、方法和软件工具将在专门的项目网站(https://www.example.com)上向公众开放,受保护和加固的DL模型将发布到GitHub,以促进社区使用。tescase.coe.neu.edu这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characteristic Examples: High-Robustness, Low-Transferability Fingerprinting of Neural Networks
  • DOI:
    10.24963/ijcai.2021/80
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siyue Wang;Xiao Wang;Pin-Yu Chen;Pu Zhao;Xue Lin
  • 通讯作者:
    Siyue Wang;Xiao Wang;Pin-Yu Chen;Pu Zhao;Xue Lin
High-Robustness, Low-Transferability Fingerprinting of Neural Networks
  • DOI:
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siyue Wang;Xiao Wang;Pin-Yu Chen;Pu Zhao;Xue Lin
  • 通讯作者:
    Siyue Wang;Xiao Wang;Pin-Yu Chen;Pu Zhao;Xue Lin
Stealthy-Shutdown: Practical Remote Power Attacks in Multi - Tenant FPGAs
隐形关闭:多租户 FPGA 中的实用远程电源攻击
EMShepherd: Detecting Adversarial Samples via Side-channel Leakage
Detection and Recovery Against Deep Neural Network Fault Injection Attacks Based on Contrastive Learning
  • DOI:
    10.48550/arxiv.2401.16766
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenan Wang;Pu Zhao;Siyue Wang;Xue Lin
  • 通讯作者:
    Chenan Wang;Pu Zhao;Siyue Wang;Xue Lin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunsi Fei其他文献

Orchestrating Horizontal Parallelism and Vertical Instruction Packing of Programs to Improve System Overall Efficiency
编排程序的水平并行性和垂直指令打包,以提高系统整体效率
  • DOI:
    10.1109/tc.2009.41
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hai Lin;Yunsi Fei
  • 通讯作者:
    Yunsi Fei
Towards secure cryptographic software implementation against side-channel power analysis attacks
针对侧信道功率分析攻击的安全加密软件实施
DeepStrike: Remotely-Guided Fault Injection Attacks on DNN Accelerator in Cloud-FPGA
DeepStrike:对 Cloud-FPGA 中的 DNN 加速器进行远程引导故障注入攻击
A novel multi-objective instruction synthesis flow for application-specific instruction set processors
用于特定应用指令集处理器的新颖的多目标指令合成流程
  • DOI:
    10.1145/1785481.1785576
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hai Lin;Yunsi Fei
  • 通讯作者:
    Yunsi Fei
Register file partitioning and recompilation for register file power reduction
寄存器文件分区和重新编译以降低寄存器文件功耗
  • DOI:
    10.1145/1754405.1754409
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuan Guan;Yunsi Fei
  • 通讯作者:
    Yunsi Fei

Yunsi Fei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunsi Fei', 18)}}的其他基金

EAGER: Side Channels Go Deep - Leveraging Deep Learning for Side-channel Analysis and Protection
EAGER:侧信道深入——利用深度学习进行侧信道分析和保护
  • 批准号:
    2212010
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Phase I IUCRC Northeastern University: Center for Hardware and Embedded System Security and Trust (CHEST)
第一阶段IUCRC东北大学:硬件和嵌入式系统安全与信任中心(CHEST)
  • 批准号:
    1916762
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Planning IUCRC Northeastern University: Center for Hardware and Embedded System Security and Trust (CHEST)
规划 IUCCRC 东北大学:硬件和嵌入式系统安全与信任中心 (CHEST)
  • 批准号:
    1747748
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
TWC: Medium: Automating Countermeasures and Security Evaluation Against Software Side-channel Attacks
TWC:中:针对软件旁路攻击的自动化对策和安全评估
  • 批准号:
    1563697
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
TWC: Medium: Collaborative: A Unified Statistics-Based Framework for Side-Channel Attack Analysis and Security Evaluation of Cryptosystems
TWC:媒介:协作:基于统计的统一框架,用于密码系统的侧通道攻击分析和安全评估
  • 批准号:
    1314655
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
MRI: Development of a Testbed for Side Channel Analysis and Security Evaluation (TeSCASE)
MRI:开发侧通道分析和安全评估测试台 (TeSCASE)
  • 批准号:
    1337854
  • 财政年份:
    2013
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
A Multi-level/multi-faceted Framework for Energy-efficient Application-Specific Instruction Set Processor Synthesis
节能型专用指令集处理器综合的多层次/多方面框架
  • 批准号:
    0541102
  • 财政年份:
    2006
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant

相似国自然基金

胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
  • 批准号:
    82371765
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
  • 批准号:
    22303037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
  • 批准号:
    92053110
  • 批准年份:
    2020
  • 资助金额:
    70.0 万元
  • 项目类别:
    重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
  • 批准号:
    81902805
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
  • 批准号:
    41973063
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
  • 批准号:
    31900138
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CORDEX-CORE区域气候模拟与预估研讨会
  • 批准号:
    41981240365
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Increasing user autonomy and advertiser and platform responsibility in online advertising
SaTC:核心:中:增加在线广告中的用户自主权以及广告商和平台责任
  • 批准号:
    2318290
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
  • 批准号:
    2334148
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Medium: Collaborative: Hardening Off-the-Shelf Software Against Side Channel Attacks
SaTC:核心:媒介:协作:强化现成软件以抵御侧通道攻击
  • 批准号:
    2425665
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
  • 批准号:
    2237329
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Interactions between Driver and Vehicle Using Batteries
合作研究:SaTC:核心:中:使用电池确保驾驶员和车辆之间的交互安全
  • 批准号:
    2245224
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Understanding and Combatting Impersonation Attacks and Data Leakage in Online Advertising
协作研究:SaTC:核心:媒介:理解和打击在线广告中的冒充攻击和数据泄露
  • 批准号:
    2247516
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了