EAGER: Side Channels Go Deep - Leveraging Deep Learning for Side-channel Analysis and Protection
EAGER:侧信道深入——利用深度学习进行侧信道分析和保护
基本信息
- 批准号:2212010
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Side-channel attacks (SCAs) have presented serious threats to confidentiality and privacy in various areas including finance, transportation, mobile communications, and clouds. The new exploits, Meltdown and Spectre, have revealed that indispensable performance-related optimizations of modern computer architecture have turned into fundamental vulnerabilities for information leakage. However, finding SCA leakage thoroughly on real systems can be challenging, and inferior leakage evaluation methods used by the system developer would result in devices or software without appropriate protection entering field operations, vulnerable to dedicated adversaries possessing more sophisticated attacks. The recent advancement of machine learning techniques, particularly deep neural networks (DNNs), has facilitated SCAs to learn and utilize side-channel power leakage of complex forms, resulting in outperforming the strongest classic template attacks and even breaking certain common SCA countermeasures. Power leakage and security evaluation has shifted to DL-based methods. However, there is little application of DNNs in microarchitectural attacks, despite the surging discovery and exploitation of vulnerable microarchitectures. This project aims to leverage the rapidly evolving advances of deep learning in both microarchitectural SCAs and countermeasures. The novelties of the project lie in both a new microarchitecture monitor and the follow-on data analytic and system obfuscation methods. The project's broad significance and importance are it will advance the state-of-the-art on microarchitectural attacks, side-channel security evaluation, and protection against confidentiality and privacy breach.This project investigates foundational issues of applying deep learning techniques for both microarchitectural side-channel analysis and protection. The technical approach includes a persistent cache monitoring mechanism, which significantly improves the observability of the victim execution by the spy and captures detailed information leakage in timing traces. Appropriate DNN models are being built to exploit the timing traces for secret retrieval. The entire framework of microarchitectural monitoring and deep learning-based attacks is applicable to diverse platforms, enabled by cross-device transfer learning and generative adversarial networks (GANs). The concept of adversarial examples is being leveraged to direct novel effective countermeasures against DL-based side-channel attacks. The outcome of this project, thorough DL-based side-channel attacks, sound security evaluation, and efficient protections, will have profound impact in securing the clouds and critical systems and infrastructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
侧通道攻击(SCAS)在包括金融,运输,移动通信和云在内的各个领域对机密性和隐私构成了严重威胁。新的漏洞利用融化和幽灵表明,现代计算机体系结构与不可或缺的性能相关的优化已经变成了信息泄漏的根本脆弱性。但是,在真实系统上彻底找到SCA泄漏可能是具有挑战性的,并且系统开发人员使用的较低泄漏评估方法将导致设备或软件,而无需适当的保护进入现场操作,这很容易受到具有更复杂攻击的专用对手的影响。机器学习技术的最新进步,尤其是深神经网络(DNNS),促进了SCAS学习和利用复杂形式的侧向通道功率泄漏,从而超过了最强的经典模板攻击,甚至超出了某些常见的SCA对策。电源泄漏和安全评估已转移到基于DL的方法。但是,尽管发现和剥削了脆弱的微体系结构,但DNN在微体系攻击中几乎没有应用。该项目旨在利用微观构造SCA和对策的深度学习的快速发展。该项目的新颖性在于新的微结构监视器以及后续数据分析和系统混淆方法。该项目的广泛意义和重要性在于它将在微体系攻击,侧渠道安全评估以及防止机密性和隐私违反的保护方面提高最新作用。该项目研究了将深度学习技术应用于微观结构的侧渠道分析和保护的基础问题。技术方法包括一种持续的缓存监视机制,该机制可大大提高间谍的受害者执行能力,并捕获正时轨迹中的详细信息泄漏。正在构建适当的DNN模型,以利用定时迹线进行秘密检索。 微体系检查监测和基于深度学习的攻击的整个框架适用于各种平台,这是通过跨设备转移学习和生成的对抗网络(GAN)实现的。对抗性例子的概念是利用来指导针对基于DL的侧通道攻击的新型有效对策。该项目的结果,基于DL的侧渠道攻击,合理的安全评估以及有效的保护,将对确保云,关键的系统和基础设施产生深远的影响。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来通过评估来支持的,这是值得的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Guessing Entropy-Based Framework for Deep Learning-Assisted Side-Channel Analysis
用于深度学习辅助侧信道分析的基于猜测熵的框架
- DOI:10.1109/tifs.2023.3273169
- 发表时间:2023
- 期刊:
- 影响因子:6.8
- 作者:Zhang, Ziyue;Ding, A. Adam;Fei, Yunsi
- 通讯作者:Fei, Yunsi
Understanding and Quantifying Adversarial Examples Existence in Linear Classification
- DOI:10.1109/icmlc56445.2022.9941315
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Xupeng Shi;A. Ding
- 通讯作者:Xupeng Shi;A. Ding
A Cross-Platform Cache Timing Attack Framework via Deep Learning
基于深度学习的跨平台缓存定时攻击框架
- DOI:10.23919/date54114.2022.9774612
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ding, Ruyi;Zhang, Ziyue;Zhang, Xiang;Gongye, Cheng;Fei, Yunsi;Ding, Aidong A.
- 通讯作者:Ding, Aidong A.
EMShepherd: Detecting Adversarial Samples via Side-channel Leakage
- DOI:10.1145/3579856.3582827
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Ruyi Ding;Gongye Cheng;Siyue Wang;A. A. Ding-A.;Yunsi Fei
- 通讯作者:Ruyi Ding;Gongye Cheng;Siyue Wang;A. A. Ding-A.;Yunsi Fei
Ran$Net: An Anti-Ransomware Methodology based on Cache Monitoring and Deep Learning
Ran$Net:基于缓存监控和深度学习的反勒索软件方法
- DOI:10.1145/3526241.3530830
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Xiang;Zhang, Ziyue;Ding, Ruyi;Gongye, Cheng;Ding, Aidong Adam;Fei, Yunsi
- 通讯作者:Fei, Yunsi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yunsi Fei其他文献
Orchestrating Horizontal Parallelism and Vertical Instruction Packing of Programs to Improve System Overall Efficiency
编排程序的水平并行性和垂直指令打包,以提高系统整体效率
- DOI:
10.1109/tc.2009.41 - 发表时间:
2009 - 期刊:
- 影响因子:3.7
- 作者:
Hai Lin;Yunsi Fei - 通讯作者:
Yunsi Fei
A novel multi-objective instruction synthesis flow for application-specific instruction set processors
用于特定应用指令集处理器的新颖的多目标指令合成流程
- DOI:
10.1145/1785481.1785576 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Hai Lin;Yunsi Fei - 通讯作者:
Yunsi Fei
Towards secure cryptographic software implementation against side-channel power analysis attacks
针对侧信道功率分析攻击的安全加密软件实施
- DOI:
10.1109/asap.2015.7245722 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Pei Luo;Liwei Zhang;Yunsi Fei;A. Ding - 通讯作者:
A. Ding
DeepStrike: Remotely-Guided Fault Injection Attacks on DNN Accelerator in Cloud-FPGA
DeepStrike:对 Cloud-FPGA 中的 DNN 加速器进行远程引导故障注入攻击
- DOI:
10.1109/dac18074.2021.9586262 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yukui Luo;Cheng Gongye;Yunsi Fei;Xiaolin Xu - 通讯作者:
Xiaolin Xu
Register file partitioning and recompilation for register file power reduction
寄存器文件分区和重新编译以降低寄存器文件功耗
- DOI:
10.1145/1754405.1754409 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Xuan Guan;Yunsi Fei - 通讯作者:
Yunsi Fei
Yunsi Fei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yunsi Fei', 18)}}的其他基金
SaTC: CORE: Medium: Protecting Confidentiality and Integrity of Deep Neural Networks against Side-Channel and Fault Attacks
SaTC:核心:中:保护深度神经网络的机密性和完整性免受侧通道和故障攻击
- 批准号:
1929300 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Phase I IUCRC Northeastern University: Center for Hardware and Embedded System Security and Trust (CHEST)
第一阶段IUCRC东北大学:硬件和嵌入式系统安全与信任中心(CHEST)
- 批准号:
1916762 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Planning IUCRC Northeastern University: Center for Hardware and Embedded System Security and Trust (CHEST)
规划 IUCCRC 东北大学:硬件和嵌入式系统安全与信任中心 (CHEST)
- 批准号:
1747748 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
TWC: Medium: Automating Countermeasures and Security Evaluation Against Software Side-channel Attacks
TWC:中:针对软件旁路攻击的自动化对策和安全评估
- 批准号:
1563697 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: A Unified Statistics-Based Framework for Side-Channel Attack Analysis and Security Evaluation of Cryptosystems
TWC:媒介:协作:基于统计的统一框架,用于密码系统的侧通道攻击分析和安全评估
- 批准号:
1314655 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Development of a Testbed for Side Channel Analysis and Security Evaluation (TeSCASE)
MRI:开发侧通道分析和安全评估测试台 (TeSCASE)
- 批准号:
1337854 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A Multi-level/multi-faceted Framework for Energy-efficient Application-Specific Instruction Set Processor Synthesis
节能型专用指令集处理器综合的多层次/多方面框架
- 批准号:
0541102 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
离子型稀土尾矿边坡治理浅层植被根系固土力学行为研究
- 批准号:52364014
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于动强度劣化的近断层土石混合体边坡脉冲致滑机理研究
- 批准号:52309138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向移动边缘网络的高效智能云边端协同调度机制
- 批准号:62302343
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
灌草根系对裂隙性红黏土边坡浅层稳定性的作用机制及控制方法
- 批准号:52378439
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
边编辑问题的参数复杂性
- 批准号:62372394
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A full spectrum rational approach to identify antiarrhythmic agents targeting IKs Channels
识别针对 IK 通道的抗心律失常药物的全谱理性方法
- 批准号:
10734513 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A functional characterization of Brugia malayi GABA-gated chloride channels: an unexplored target for antifilarial therapeutics
马来丝虫 GABA 门控氯离子通道的功能表征:抗丝虫治疗的未探索靶点
- 批准号:
10742453 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Clinical Phase I trials on an IND single molecule dual inhibitor of Cav3 channels and soluble epoxide hydrolase for treatment of neuropathic pain
Cav3通道和可溶性环氧化物水解酶的单分子双重抑制剂治疗神经性疼痛的IND临床I期试验
- 批准号:
10760089 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: