QII-TAQS: Quantum Photonics at Telecommunications Wavelengths Based on Metal-Ion-Doped Materials

QII-TAQS:基于金属离子掺杂材料的电信波长量子光子学

基本信息

  • 批准号:
    1936350
  • 负责人:
  • 金额:
    $ 137.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The rapidly developing field of quantum information science exploits the unique properties of quantum states to process, store, and transmit data in new ways that are impossible to achieve with conventional information, communication, and computer technologies. For these next-generation quantum systems to be implemented in practical, real-world applications, there is a critical need to develop chip-scale integrated components that perform all the functions required for traditional information systems, but at the tremendously more demanding quantum level. While many such individual components have been demonstrated, current implementations have employed a wide variety of disparate, and often incompatible, approaches that are not easily integrated with each other or with the existing conventional technological infrastructure, such as optical fiber networks and classical computer processors. To address the need for such integration, this project brings together researchers with expertise in quantum photonics and quantum hardware fabrication at Caltech, quantum theory and semiconductor physics at Caltech, semiconductor growth and devices at University of Texas - Austin, and quantum decoherence, solid-state chemistry, and light-matter interactions at Montana State University. This interdisciplinary team seeks to develop and design integrated quantum hardware by incorporating rare-earth ions, which are one of the most successful quantum systems, with semiconductor materials that can be easily integrated with existing optical and electronic technologies. In addition to the direct impact in quantum information science, this research also provides new insights into the nanoscale properties of ions and defects in semiconductors, since the intrinsically fragile nature of quantum states can be used as a uniquely powerful probe of interactions and imperfections in materials. In turn, this information can be used to accelerate the development of ion-enabled semiconductor technologies far beyond quantum applications, such as electroluminescent devices, integrated electro-optic components, and high-speed photonic signal processing and sensing systems. Rare-earth-ions doped into complex oxides have enabled demonstrations of state-of-the-art technologies for optical quantum memories and shown excellent prospects for implementing microwave to optical quantum transduction and single quantum bits. In particular, Er3+ provides direct optical addressing at 1.5 micron telecommunications wavelengths that allows integration with existing infrastructure and commercial hardware. To enable robust, scalable quantum photonic devices based on metal-ion-doped materials, the technology would be based ideally on established semiconductor materials that are easily fabricated with conventional processes rather than the existing oxide materials that are difficult to incorporate into integrated quantum devices. This research explores the quantum optical properties of rare-earth and transition-metal ions with transitions at telecom wavelengths doped into III-V semiconductors and uses these developed materials to build a scalable nanophotonic quantum device platform. These materials show promise for combining the excellent quantum coherence properties of the metal-ion centers with the technological capabilities for growing high quality layered materials via molecular beam epitaxy and fabricating high-performance, integrated semiconductor devices. Specifically, this work investigates the low metal-ion concentration regime that has not yet been studied for semiconductors, particularly for the cryogenic temperatures employed in quantum information science where many of the traditional mechanisms that can cause relaxation are strongly suppressed. Furthermore, the optical and spin quantum coherence properties of ions such as Er3+ remain entirely unexplored in semiconductors, along with effects of materials physics unique to these host materials (charge injection, Auger relaxation, strong lattice polarization, etc.). The project addresses the critical need for scalable quantum photonic systems by closely coordinating studies and modeling of material properties and chemistry, nanoscale dynamics and decoherence phenomena, and quantum device engineering along with the discovery and fundamental study of new decoherence and interaction phenomena in this previously unexplored regime for these materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
快速发展的量子信息科学领域利用量子态的独特性质,以传统信息,通信和计算机技术无法实现的新方式处理,存储和传输数据。 为了使这些下一代量子系统在实际的现实世界应用中实现,迫切需要开发芯片级集成组件,以执行传统信息系统所需的所有功能,但要求更高的量子水平。 虽然已经展示了许多这样的单独组件,但是当前的实现方式已经采用了各种各样的不同的并且通常不兼容的方法,这些方法不容易彼此集成或者与现有的常规技术基础设施(诸如光纤网络和经典计算机处理器)集成。 为了满足这种整合的需要,该项目汇集了加州理工学院量子光子学和量子硬件制造,加州理工学院量子理论和半导体物理,德克萨斯大学奥斯汀分校半导体生长和设备以及蒙大拿州立大学量子退相干,固态化学和光物质相互作用方面的专业知识的研究人员。 该跨学科团队旨在通过将最成功的量子系统之一的稀土离子与可以轻松与现有光学和电子技术集成的半导体材料相结合来开发和设计集成量子硬件。 除了对量子信息科学的直接影响外,这项研究还为半导体中离子和缺陷的纳米级特性提供了新的见解,因为量子态固有的脆弱性可以用作材料中相互作用和缺陷的独特强大探针。 反过来,这些信息可用于加速离子激活半导体技术的发展,远远超出量子应用,如电致发光器件,集成电光元件和高速光子信号处理和传感系统。稀土离子掺杂到复合氧化物中,使得光量子存储器的最新技术得以展示,并显示出实现微波到光量子转换和单量子比特的良好前景。 特别是,Er 3+在1.5微米电信波长下提供直接光学寻址,允许与现有基础设施和商业硬件集成。为了实现基于金属离子掺杂材料的稳健的、可扩展的量子光子器件,该技术将理想地基于易于用传统工艺制造的已建立的半导体材料,而不是难以并入集成量子器件的现有氧化物材料。本研究探索了稀土和过渡金属离子的量子光学特性,这些离子在掺杂到III-V族半导体中的电信波长处具有跃迁,并使用这些开发的材料来构建可扩展的纳米光子量子器件平台。 这些材料显示出将金属离子中心的优异量子相干特性与通过分子束外延生长高质量层状材料和制造高性能集成半导体器件的技术能力相结合的前景。 具体来说,这项工作研究了尚未研究半导体的低金属离子浓度制度,特别是量子信息科学中采用的低温温度,其中许多传统的机制,可以导致松弛被强烈抑制。 此外,诸如Er 3+的离子的光学和自旋量子相干性质在半导体中仍然完全未被探索,沿着这些主体材料特有的材料物理效应(电荷注入、俄歇弛豫、强晶格极化等)。 该项目通过密切协调材料特性和化学、纳米级动力学和退相干现象的研究和建模,和量子器件工程,沿着在这些材料的这种以前未探索的制度中发现和基础研究新的退相干和相互作用现象。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying antisite defect concentrations in yttrium aluminum garnet by high-precision density analysis
  • DOI:
    10.1016/j.jlumin.2022.119408
  • 发表时间:
    2022-10-28
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Kwapisz,R.;Cone,R. L.;Thiel,C. W.
  • 通讯作者:
    Thiel,C. W.
Characterization of Er3+:YVO4 for microwave to optical transduction
  • DOI:
    10.1103/physrevb.104.054111
  • 发表时间:
    2021-08-16
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xie, Tian;Rochman, Jake;Faraon, Andrei
  • 通讯作者:
    Faraon, Andrei
Coherent Optical Control of Single Ytterbium Ions in a GaAs Hybrid Photonic Crystal Cavity on Yb:YVO4
Yb:YVO4 上 GaAs 混合光子晶体腔中单个镱离子的相干光学控制
  • DOI:
    10.1364/cleo_qels.2022.fm5d.4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wu, Chun-Ju;Ruskuc, Andrei;Riedel, Daniel;Faraon, Andrei
  • 通讯作者:
    Faraon, Andrei
Many-body theory of phonon-induced spin relaxation and decoherence
声子引起的自旋弛豫和退相干的多体理论
  • DOI:
    10.1103/physrevb.106.174404
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Park, Jinsoo;Luo, Yao;Zhou, Jin-Jian;Bernardi, Marco
  • 通讯作者:
    Bernardi, Marco
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Thiel其他文献

Charles Thiel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QII-TAQS: Spatially and Temporally Resolved Ultrasensitive Magnetic Sensing of Quantum Materials
QII-TAQS:量子材料的空间和时间分辨超灵敏磁传感
  • 批准号:
    1936221
  • 财政年份:
    2020
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Standard Grant
QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics
QII-TAQS:通过对称驱动的 Valley Opto electronics 的量子电路
  • 批准号:
    1936276
  • 财政年份:
    2019
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Standard Grant
QII-TAQS: Simulating Entangled Quantum Chemical Abstract Machines
QII-TAQS:模拟纠缠量子化学抽象机
  • 批准号:
    1936353
  • 财政年份:
    2019
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Standard Grant
QII-TAQS: Quantum Control of Ultracold Atoms in Optical Lattices for Inertial Sensing for Space Applications
QII-TAQS:光学晶格中超冷原子的量子控制,用于空间应用的惯性传感
  • 批准号:
    1936303
  • 财政年份:
    2019
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Standard Grant
QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices
QII-TAQS:基于极化晶格的芯片级量子模拟器
  • 批准号:
    1936351
  • 财政年份:
    2019
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Standard Grant
QII-TAQS: Enhancing Quantum Coherence by Dissipation in Programmable Atomic Arrays
QII-TAQS:通过可编程原子阵列中的耗散增强量子相干性
  • 批准号:
    1936359
  • 财政年份:
    2019
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Standard Grant
QII-TAQS: Quantum Devices with Majorana Fermions in High-Quality Three-Dimensional Topological Insulator Heterostructures
QII-TAQS:高质量三维拓扑绝缘体异质结构中具有马约拉纳费米子的量子器件
  • 批准号:
    1936383
  • 财政年份:
    2019
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Standard Grant
QII-TAQS: Majorana Nanomanipulation for Topological Quantum Computing
QII-TAQS:拓扑量子计算的马约拉纳纳米操作
  • 批准号:
    1936246
  • 财政年份:
    2019
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Standard Grant
QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing
QII-TAQS:单分子生物传感量子计量平台
  • 批准号:
    1936118
  • 财政年份:
    2019
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Continuing Grant
QII-TAQS: Topological Quantum Devices from Nanoscale Mechanical Control of Materials
QII-TAQS:来自材料纳米级机械控制的拓扑量子器件
  • 批准号:
    1936250
  • 财政年份:
    2019
  • 资助金额:
    $ 137.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了