QII-TAQS: Quantum Metrological Platform for Single-Molecule Bio-Sensing

QII-TAQS:单分子生物传感量子计量平台

基本信息

  • 批准号:
    1936118
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Quantum systems enable some of the most accurate measurements known to man. For example, modern atomic clocks measure time with an accuracy exceeding one second over the age of the universe. Recently, a new class of room temperature, solid state, quantum systems emerged that utilize similar quantum measurement concepts, but measure magnetic fields rather than time. In principle, these quantum sensors based on crystallographic defects in diamond could enable the detection of tiny magnetic fields created by nuclear spins in an individual molecule. Such a measurement could provide important insights into complex molecular biological processes at the level of individual molecules with atomic resolution. Although powerful, current quantum technologies lack the sensitivity and biophysical tools to probe biological systems in a single-molecule regime. To overcome these limitations, this project relies on a novel, interdisciplinary approach that combines research in physics, computer science, materials science, and biophysics. The ability to probe biological systems in such a new regime would be of far reaching consequences to fundamental biological research. At the same time the concepts developed in this project will pave the way to a new generation of biomedical devices based on quantum sensing that could significantly simplify sample preparation and enable high throughput screening at a fraction of today's cost. In parallel, this research project will also contribute to training a new workforce in quantum engineering through the development of new course materials, the establishment of conferences that access the interdisciplinary aspects of quantum sensing, and the creation of workshops that enable scientists from all over the world to get hands-on training in the quantum technologies. This collaborative, interdisciplinary effort develops quantum sensing capabilities for nuclear magnetic resonance (NMR) spectroscopy of small ensembles and individual biomolecules. Sensing based on nitrogen vacancy (NV) centers in diamond enabled the detection of nuclear spins in single proteins and basic NMR spectra. However, these experiments are unable to provide biological information, require days of data acquisition, and are limited to denatured proteins. Applications to intact proteins remain an open challenge due to limitations in quantum sensing methodology, a lack of single-molecule techniques, and imperfections in diamond material engineering. This project investigates fundamental mechanisms and the engineering of systems that overcome these limitations. Specific objectives include: (1) Theoretical exploration of the fundamental limits in single-molecule NMR, (2) Investigation of quantum metrological protocols for single-molecule NMR, (3) Spectroscopic study of diamond surfaces and their functionalization, and (4) Engineering of a single-molecule platform for quantum sensing devices. Goal 1 employs theoretical methods to investigate the limits of single-molecule NMR in the context of multi-parameter sensing under decoherence. Goal 2 develops and benchmarks single-molecule NMR protocols by combining classical signal processing and experimental quantum control. Goal 3 relies on materials science techniques and quantum sensing to understand the origin of decoherence in shallow NV centers. Goal 4 combines methods from single-molecule biophysics and diamond-based NMR spectroscopy for the development of a bio quantum sensor interface. The project will advance understanding of quantum sensing at the intersection of quantum information, engineering, and biology. This will lead to the development and characterization of new computational protocols and devices for single-molecule NMR sensing. This project is jointly funded by Quantum Leap Big Idea Program, the Division of Chemistry in the Mathematical and Physical Sciences Directorate, and the Office of International Science and Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子系统使一些人类已知的最精确的测量成为可能。例如,现代原子钟测量时间的精度超过宇宙年龄的一秒。最近,一种新的室温、固态量子系统出现了,它利用类似的量子测量概念,但测量的是磁场而不是时间。原则上,这些基于金刚石晶体缺陷的量子传感器可以检测单个分子中核自旋产生的微小磁场。这样的测量可以在单个分子的原子分辨率水平上为复杂的分子生物学过程提供重要的见解。虽然强大,但目前的量子技术缺乏灵敏度和生物物理工具来探测单分子状态下的生物系统。为了克服这些限制,该项目依赖于一种新颖的跨学科方法,结合了物理学、计算机科学、材料科学和生物物理学的研究。在这种新体制下探测生物系统的能力将对基础生物学研究产生深远的影响。与此同时,该项目开发的概念将为基于量子传感的新一代生物医学设备铺平道路,这种设备可以大大简化样品制备,并以目前成本的一小部分实现高通量筛选。与此同时,该研究项目还将通过开发新的课程材料,建立能够访问量子传感跨学科方面的会议,以及创建使来自世界各地的科学家能够获得量子技术实践培训的研讨会,为培养量子工程方面的新劳动力做出贡献。这一合作的跨学科努力开发了小集合和个体生物分子的核磁共振(NMR)光谱的量子传感能力。基于金刚石中氮空位(NV)中心的传感可以检测单个蛋白质中的核自旋和基本核磁共振波谱。然而,这些实验无法提供生物学信息,需要数天的数据采集,并且仅限于变性蛋白质。由于量子传感方法的局限性、单分子技术的缺乏以及金刚石材料工程的不完善,将其应用于完整蛋白质仍然是一个开放的挑战。本项目研究克服这些限制的基本机制和系统工程。具体目标包括:(1)单分子核磁共振基本极限的理论探索;(2)单分子核磁共振量子计量方案的研究;(3)金刚石表面及其功能化的光谱研究;(4)量子传感器件的单分子平台工程。目标1采用理论方法研究退相干下单分子核磁共振在多参数传感环境下的局限性。目标2通过结合经典信号处理和实验量子控制来开发和基准测试单分子核磁共振协议。目标3依靠材料科学技术和量子传感来理解浅NV中心退相干的起源。目标4结合了单分子生物物理学和基于金刚石的核磁共振光谱的方法,以开发生物量子传感器接口。该项目将在量子信息、工程和生物学的交叉领域推进对量子传感的理解。这将导致单分子核磁共振传感的新计算协议和设备的发展和表征。本项目由量子飞跃大创意计划、数学与物理科学理事会化学处和国际科学与工程办公室联合资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Representation Learning via Quantum Neural Tangent Kernels
通过量子神经正切核进行表示学习
  • DOI:
    10.1103/prxquantum.3.030323
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Liu, Junyu;Tacchino, Francesco;Glick, Jennifer R.;Jiang, Liang;Mezzacapo, Antonio
  • 通讯作者:
    Mezzacapo, Antonio
Tailored XZZX codes for biased noise
  • DOI:
    10.1103/physrevresearch.5.013035
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Qiang-Da Xu;Nam Mannucci;Alireza Seif;Aleksander Kubica;S. Flammia;Liang Jiang
  • 通讯作者:
    Qiang-Da Xu;Nam Mannucci;Alireza Seif;Aleksander Kubica;S. Flammia;Liang Jiang
Distributed quantum sensing enhanced by continuous-variable error correction
  • DOI:
    10.1088/1367-2630/ab7257
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Quntao Zhuang;J. Preskill;Liang Jiang
  • 通讯作者:
    Quntao Zhuang;J. Preskill;Liang Jiang
Quantum limits of superresolution in noisy environment
噪声环境下超分辨率的量子极限
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oh, Changhun;Zhou, Sisi;Wong, Yat;Jiang, Liang
  • 通讯作者:
    Jiang, Liang
Resilience of Quantum Random Access Memory to Generic Noise
  • DOI:
    10.1103/prxquantum.2.020311
  • 发表时间:
    2021-04-29
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Hann, Connor T.;Lee, Gideon;Jiang, Liang
  • 通讯作者:
    Jiang, Liang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Maurer其他文献

Correction: Efect of coupling primary sedimentation tank (PST) and microscreen (MS) to remove particulate organic carbon (POC): a study to mitigate energy demand in municipal wastewater treatment plants
  • DOI:
    10.1186/s42834-023-00191-w
  • 发表时间:
    2023-09-12
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Behnam Askari Lasaki;Peter Maurer;Harald Schönberger
  • 通讯作者:
    Harald Schönberger
Empowering municipal wastewater treatment: Enhancing particulate organic carbon removal via chemical advanced primary treatment
赋予城市污水处理能力:通过化学强化一级处理提高颗粒有机碳去除率
  • DOI:
    10.1016/j.eti.2023.103436
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    7.100
  • 作者:
    Behnam Askari Lasaki;Peter Maurer;Harald Schönberger;Emilia Palomeque Alvarez
  • 通讯作者:
    Emilia Palomeque Alvarez
A novel integrated biorefinery for enhancing municipal wastewater treatment
  • DOI:
    10.1016/j.wroa.2025.100373
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Behnam Askari Lasaki;Peter Maurer;Harald Schönberger
  • 通讯作者:
    Harald Schönberger
Alterations of Mass Density and 3D Osteocyte Lacunar Properties in Bisphosphonate-Related Osteonecrotic Human Jaw Bone, a Synchrotron µCT Study
双膦酸盐相关的人颌骨坏死中质量密度和 3D 骨细胞腔隙特性的变化,同步加速器 µCT 研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    B. Hesse;M. Langer;P. Varga;A. Pacureanu;Pei Dong;Susanne Schrof;N. Männicke;H. Suhonen;C. Olivier;Peter Maurer;G. Kazakia;K. Raum;F. Peyrin
  • 通讯作者:
    F. Peyrin
The integration of alternative treatment modalities in HIV infection--the patient's perspective.
HIV 感染中替代治疗方式的整合——患者的观点。
  • DOI:
    10.1016/0022-3999(94)90021-3
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    W. Langewitz;S. Rüttimann;G. Laifer;Peter Maurer;A. Kiss
  • 通讯作者:
    A. Kiss

Peter Maurer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Maurer', 18)}}的其他基金

QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator Track C: High-Throughput Proteomics Technology Based on Quantum Sensing
NSF融合加速器轨道C:基于量子传感的高通量蛋白质组学技术
  • 批准号:
    2040520
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CISE Educational Infrastructure: Incorporating Design and Design Automation into the Undergraduate Computer Science Curriculum
CISE 教育基础设施:将设计和设计自动化纳入本科计算机科学课程
  • 批准号:
    9522265
  • 财政年份:
    1995
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Improving the Performance of Digital Logic Simulation
提高数字逻辑仿真的性能
  • 批准号:
    9403414
  • 财政年份:
    1994
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
Research in Compiled Logic Simulation
编译逻辑仿真研究
  • 批准号:
    9006444
  • 财政年份:
    1990
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QII-TAQS: Spatially and Temporally Resolved Ultrasensitive Magnetic Sensing of Quantum Materials
QII-TAQS:量子材料的空间和时间分辨超灵敏磁传感
  • 批准号:
    1936221
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QII-TAQS: Quantum Photonics at Telecommunications Wavelengths Based on Metal-Ion-Doped Materials
QII-TAQS:基于金属离子掺杂材料的电信波长量子光子学
  • 批准号:
    1936350
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics
QII-TAQS:通过对称驱动的 Valley Opto electronics 的量子电路
  • 批准号:
    1936276
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QII-TAQS: Simulating Entangled Quantum Chemical Abstract Machines
QII-TAQS:模拟纠缠量子化学抽象机
  • 批准号:
    1936353
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QII-TAQS: Quantum Control of Ultracold Atoms in Optical Lattices for Inertial Sensing for Space Applications
QII-TAQS:光学晶格中超冷原子的量子控制,用于空间应用的惯性传感
  • 批准号:
    1936303
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices
QII-TAQS:基于极化晶格的芯片级量子模拟器
  • 批准号:
    1936351
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QII-TAQS: Enhancing Quantum Coherence by Dissipation in Programmable Atomic Arrays
QII-TAQS:通过可编程原子阵列中的耗散增强量子相干性
  • 批准号:
    1936359
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QII-TAQS: Quantum Devices with Majorana Fermions in High-Quality Three-Dimensional Topological Insulator Heterostructures
QII-TAQS:高质量三维拓扑绝缘体异质结构中具有马约拉纳费米子的量子器件
  • 批准号:
    1936383
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QII-TAQS: Majorana Nanomanipulation for Topological Quantum Computing
QII-TAQS:拓扑量子计算的马约拉纳纳米操作
  • 批准号:
    1936246
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QII-TAQS: Topological Quantum Devices from Nanoscale Mechanical Control of Materials
QII-TAQS:来自材料纳米级机械控制的拓扑量子器件
  • 批准号:
    1936250
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了