QII-TAQS: Spatially and Temporally Resolved Ultrasensitive Magnetic Sensing of Quantum Materials
QII-TAQS:量子材料的空间和时间分辨超灵敏磁传感
基本信息
- 批准号:1936221
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims to develop a quantum mechanical magnetic camera (QMMC) for spatial and temporal imaging of ultra-weak magnetic fields that arise on the surfaces of quantum materials. Such a camera will obtain detailed information about intricate spatial correlations, providing novel information about the nature of quantum states. The research aims to improve the magnetic sensitivity of magnetic tunneling junction sensors and integrated sensor arrays. The team of researchers in quantum materials science, magnetic sensing, and semiconductor integrated circuits has the capability of synthesizing quantum materials, fabricating devices, characterizing them with advanced resonance techniques, and developing theoretical understanding of quantum mechanisms and phenomena. The camera is intended to become a magnetic "visual" tool, not only for exotic quantum materials, but also for any two-dimensional active object emitting a spatial and/or temporal magnetic field profile. The expected outcome is expected to be transformative in terms of a broadened scope of high-end applications currently not available due to small field signals. The findings will advance the fields of both strongly correlated-electron matter and quantum information science. The research activities will also enable student entrepreneurs to create start-up companies that convert the QMMC prototypes into high performance QMMC products. In addition, the research team is collaboratively developing a new quantum information science course and organizing a summer workshop for graduate students and researchers in New England and beyond. This project brings together a multidisciplinary team of researchers with expertise in quantum sensing, nanoscale fabrication, synthesis and characterization of quantum materials, as well as theoretical modeling, to develop a quantum mechanical magnetic camera (QMMC), providing spatial and temporal imaging of ultra-weak magnetic fields with unprecedented sensitivity and - in fully optimized implementation - submicron spatial resolution over macroscopically large areas. The sensor is based on magnetic tunneling junction (MTJ) technology. With QMMC, the research team obtains detailed information about the intricate spatial correlations and local polarization of the topological quantum states. These unique measurements provide valuable tests of theoretical predictions of quantum correlations in interacting electron matter and verify the potential of these materials for construction of high-performance qubits with sufficiently long coherence times. The key to the success of the project is to significantly improve the magnetic sensitivity of the MTJ sensors and integrate sensor arrays with dedicated readout circuitry. The research team will explore new quantum tunneling barrier materials that reduce the intrinsic noise of the MTJ and design new multilayer structure to enhance coherent magnetic tunneling. The MTJ sensors will be integrated with CMOS read-out circuits so that both spatial and temporal magnetic fields can be measured and processed. The QMMC not only allows emergent quantum phenomena to be studied in quantum materials, but also expands the applications of quantum magnetic sensors to modern metrology. The team is also developing a unique probe for the study of spatial and temporal correlations on the scales relevant for quantum phenomena. QMMC technology is a significant leap from state-of-the-art technology, representing a paradigm shift in the manufacturing engineering of arrayed quantum sensing devices. The research will expand engineering knowledge in quantum magnetic sensing devices and integration of modern MTJ metal-based cells with more conventional CMOS technology. The research team will nurture student entrepreneurs to develop and manufacture high performance QMMC products.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目旨在开发一种量子力学磁相机(QMMC),用于对量子材料表面产生的超弱磁场进行空间和时间成像。这样的相机将获得有关复杂空间相关性的详细信息,提供有关量子态性质的新信息。该研究旨在提高磁隧道结传感器和集成传感器阵列的磁灵敏度。量子材料科学,磁传感和半导体集成电路的研究人员团队有能力合成量子材料,制造设备,用先进的共振技术表征它们,并发展对量子机制和现象的理论理解。该相机旨在成为一种磁性“视觉”工具,不仅适用于奇异的量子材料,而且适用于任何发射空间和/或时间磁场分布的二维活动物体。预期成果预计将是变革性的,因为目前由于现场信号小而无法获得的高端应用范围将扩大。这些发现将推动强关联电子物质和量子信息科学领域的发展。研究活动还将使学生企业家能够创建初创公司,将QMMC原型转换为高性能QMMC产品。此外,研究团队正在合作开发一门新的量子信息科学课程,并为新英格兰及其他地区的研究生和研究人员组织一个夏季研讨会。 该项目汇集了一个多学科的研究人员团队,他们在量子传感,纳米级制造,量子材料的合成和表征以及理论建模方面具有专业知识,以开发量子力学磁相机(QMMC),以前所未有的灵敏度提供超弱磁场的空间和时间成像,并且-在完全优化的实施中-亚微米空间分辨率在宏观大面积。该传感器是基于磁隧道结(MTJ)技术。通过QMMC,研究小组获得了关于拓扑量子态的复杂空间相关性和局部极化的详细信息。这些独特的测量为相互作用的电子物质中量子相关性的理论预测提供了有价值的测试,并验证了这些材料用于构建具有足够长相干时间的高性能量子比特的潜力。该项目成功的关键是显著提高MTJ传感器的磁灵敏度,并将传感器阵列与专用读出电路集成。研究团队将探索新的量子隧穿势垒材料,以降低MTJ的固有噪声,并设计新的多层结构以增强相干磁隧穿。MTJ传感器将与CMOS读出电路集成,以便可以测量和处理空间和时间磁场。QMMC不仅允许在量子材料中研究涌现的量子现象,而且还将量子磁传感器的应用扩展到现代计量学。该团队还在开发一种独特的探测器,用于研究量子现象相关尺度上的空间和时间相关性。QMMC技术是最先进技术的重大飞跃,代表了阵列量子传感器件制造工程的范式转变。这项研究将扩大量子磁传感器件的工程知识,以及现代MTJ金属基电池与更传统的CMOS技术的集成。该研究团队将培养学生企业家开发和制造高性能QMMC产品。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resistively detected NMR as a probe of the topological nature of conducting edge/surface states
电阻检测核磁共振作为传导边缘/表面态拓扑性质的探针
- DOI:10.1103/physrevb.104.045144
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Zhuang, Zekun;Mitrović, V. F.;Marston, J. B.
- 通讯作者:Marston, J. B.
Resistance of single domain walls in half-metallic CrO 2 epitaxial nanostructures
半金属CrO 2 外延纳米结构中单畴壁的电阻
- DOI:10.1039/d1nr05555k
- 发表时间:2021
- 期刊:
- 影响因子:6.7
- 作者:Qian, Lijuan;Zhou, Shiyu;Wang, Kang;Xiao, Gang
- 通讯作者:Xiao, Gang
Manipulation of the interlayer exchange coupling in perpendicular magnetized thin films via tunable magnetic-layer and spacer thicknesses
- DOI:10.1103/physrevb.102.144430
- 发表时间:2020-10
- 期刊:
- 影响因子:3.7
- 作者:Kang Wang;Lijuan Qian;S. Ying;G. Xiao
- 通讯作者:Kang Wang;Lijuan Qian;S. Ying;G. Xiao
Fundamental Physics and Applications of Skyrmions: A Review
- DOI:10.1016/j.jmmm.2022.169905
- 发表时间:2022-09
- 期刊:
- 影响因子:2.7
- 作者:Kang Wang;Vineetha Bheemarasetty;Junhang Duan;Shiyu Zhou;Gang Xiao
- 通讯作者:Kang Wang;Vineetha Bheemarasetty;Junhang Duan;Shiyu Zhou;Gang Xiao
Spin transport in a quantum spin orbital liquid
- DOI:10.1103/physrevb.104.l060403
- 发表时间:2021-04
- 期刊:
- 影响因子:3.7
- 作者:Zekun Zhuang;J. Marston
- 通讯作者:Zekun Zhuang;J. Marston
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Xiao其他文献
A quantitative method to describe the flow characteristics of an oscillating flow including porous media
一种描述多孔介质振荡流流动特性的定量方法
- DOI:
10.1016/j.ijheatmasstransfer.2017.11.119 - 发表时间:
2018-04 - 期刊:
- 影响因子:5.2
- 作者:
Mingjiang Ni;Hao Peng;Umair Sultan;KunLuo;Gang Xiao - 通讯作者:
Gang Xiao
A method for video authenticity based on the fingerprint of scene frame
一种基于场景帧指纹的视频真实性检测方法
- DOI:
10.1016/j.neucom.2015.09.001 - 发表时间:
2015 - 期刊:
- 影响因子:6
- 作者:
Jiafa Mao;Gang Xiao;Weigou Sheng;Yahong Hu;Zhiguo Qu - 通讯作者:
Zhiguo Qu
Synthesis and enhanced H2S gas sensing properties of -MoO3/CuO pn junction Nanocomposite
H2S的合成及增强的气敏性能
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Tieshi Wang;Qingshan Wang;Chunling Zhu;Qiuyun Ouyang;Lihong Qi;Chunyan Li;Gang Xiao;Peng Gao;Yujin Chen - 通讯作者:
Yujin Chen
Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method
基于Kriging法模拟6013铝合金热面应变压缩本构关系
- DOI:
10.1016/s1003-6326(16)64206-1 - 发表时间:
2016-04 - 期刊:
- 影响因子:0
- 作者:
Gang Xiao;Qinwen Yang;Luoxing Li - 通讯作者:
Luoxing Li
A Potential Method to Predict Performance of Positive Stirling Cycles Based on Reverse Ones
一种基于逆斯特林循环预测正斯特林循环性能的潜在方法
- DOI:
10.3390/en14217040 - 发表时间:
2021-10 - 期刊:
- 影响因子:3.2
- 作者:
Shulin Wang;Baiao Liu;Gang Xiao;Mingjiang Ni - 通讯作者:
Mingjiang Ni
Gang Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Xiao', 18)}}的其他基金
Static and Dynamic Properties of Magnetic Skyrmions and Their Applications
磁性斯格明子的静态和动态特性及其应用
- 批准号:
2202514 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Spin Transport in Highly Spin-Polarized Epitaxial Nanostructures
高度自旋极化外延纳米结构中的自旋输运
- 批准号:
1307056 - 财政年份:2013
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
MRI: Acquisition of a High Magnetic Field and Cryogen-Free Physical Property Measurement System
MRI:获取高磁场和无冷冻剂物理特性测量系统
- 批准号:
1229195 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Physics of Nanoscale Epitaxial and Textured Spintronic Structures
纳米级外延和纹理自旋电子结构的物理学
- 批准号:
0907353 - 财政年份:2009
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Magnetic/electronic Nanostructures and Spintronics
磁/电子纳米结构和自旋电子学
- 批准号:
0605966 - 财政年份:2006
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Physics of Magnetoelectronic Microstructures
磁电子微结构物理
- 批准号:
0071770 - 财政年份:2000
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
U.S.-Vietnam Workshop: High-Temperature Superconductivity and Magnetoresistive Materials
美越研讨会:高温超导和磁阻材料
- 批准号:
9801862 - 财政年份:1998
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Ultrafast Dynamics and Micromagnetics in Magnetic Tunneling Junctions
磁隧道结中的超快动力学和微磁学
- 批准号:
9701579 - 财政年份:1997
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant