QII-TAQS: Topological Quantum Devices from Nanoscale Mechanical Control of Materials
QII-TAQS:来自材料纳米级机械控制的拓扑量子器件
基本信息
- 批准号:1936250
- 负责人:
- 金额:$ 154.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advancements in computational power over the past fifty years have mostly relied on shrinking the size of the transistor, the fundamental constituent element of the integrated circuits that make up computers. As physical limits of how small transistors can be are reached, further progress depends on exploring new concepts. One of these concepts is quantum computing, in which the quantum state of individual quantum bits (qubits) is manipulated to achieve exponential speedup of computational performance. A critical challenge to quantum computing lies in the stability and manipulation of qubits, which are highly sensitive and easily perturbed by the environment. This project explores the creation and manipulation of topological qubits, which are protected against external perturbation by their topological nature. The project controls the superconducting and topological nature of materials by applying stressors to two-dimensional materials in a device geometry similar to a transistor. Since the device geometry mirrors the conventional transistor, the potential exists to create a new fundamental constituent element for an entirely new generation of quantum integrated circuits that can be controlled using mechanical principles. The project also seeks to ensure the growth of a quantum educated society and workforce through educational course development at the pre-collegiate, undergraduate, and graduate levels. The investigators plan to conduct a high-school summer program on quantum science and engineering, as well as to introduce new courses and certification programs at the university level. Decoherence in quantum computing devices has been a long-term problem. A potential solution is the use of topologically protected Majorana bound states that may be fused and braided together to perform quantum operations. This project explores the foundations of generating, detecting, and manipulating such topologically protected quantum states through the mechanical control of quantum materials. The primary goal of this research is to strain-engineer materials for the exploration and manipulation of Majorana bound states, by controlling the superconducting and topological nature of monolayer materials. Device-scale stressors are used to create a fully solid-state device where the properties of two-dimensional transition metal ditelluride alloys may be manipulated with strain in a three-terminal transistor geometry. In doing so, the basis is set for using strain as a new type of control knob for band topology and superconductivity. The project applies strain-engineering concepts, including using static stressors from thin film stress capping layers, and dynamic stressors from piezoelectric oxides. Transition metal ditelluride alloys have been shown experimentally and theoretically to contain a vast library of strain tunable quantum phases. Through nanoscale strain engineering with these phases, superconducting and other quantum devices can be nanopatterned and controlled to explore Majorana bound state physics. Theoretical multiscale modeling and simulation of the mechanical properties of these 2D materials and devices will feed back to the experimental team to achieve the full potential of strain-controlling quantum materials.This project is jointly funded by the Quantum Leap Big Idea Program and the Division of Electrical, Communication, and Cyber Systems in the Engineering Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的50年里,计算能力的进步主要依赖于缩小晶体管的尺寸,晶体管是构成计算机的集成电路的基本组成元件。随着晶体管尺寸的物理极限已经达到,进一步的进展取决于探索新的概念。这些概念之一是量子计算,其中操纵单个量子比特(qubit)的量子状态以实现计算性能的指数加速。量子计算的一个关键挑战在于量子比特的稳定性和操纵,量子比特高度敏感,容易受到环境的干扰。该项目探索拓扑量子比特的创建和操作,这些量子比特通过其拓扑性质而免受外部扰动。该项目通过在类似晶体管的设备几何形状中向二维材料施加应力来控制材料的超导和拓扑性质。由于器件的几何形状反映了传统的晶体管,因此有可能为全新一代的量子集成电路创建一个新的基本组成元件,可以使用机械原理进行控制。该项目还旨在通过在大学预科,本科和研究生水平的教育课程开发,确保量子教育社会和劳动力的增长。研究人员计划开展一项关于量子科学和工程的高中暑期项目,并在大学层面引入新的课程和认证项目。量子计算设备中的退相干一直是一个长期的问题。一个潜在的解决方案是使用拓扑保护的马约拉纳束缚态,这些束缚态可以被融合和编织在一起以执行量子操作。该项目探索通过量子材料的机械控制来生成,检测和操纵这种拓扑保护的量子态的基础。这项研究的主要目标是通过控制单层材料的超导性和拓扑性质,对材料进行应变工程,以探索和操纵Majorana束缚态。器件级应力源用于创建全固态器件,其中二维过渡金属二碲化物合金的性质可以在三端子晶体管几何结构中用应变来操纵。在这样做的基础上,使用应变作为一种新型的控制旋钮带拓扑结构和超导性。该项目应用应变工程概念,包括使用薄膜应力帽层的静态应力源和压电氧化物的动态应力源。过渡金属二碲化物合金已经在实验上和理论上被证明含有大量的应变可调量子相库。通过这些相的纳米级应变工程,超导和其他量子器件可以被纳米图案化和控制,以探索马约拉纳束缚态物理。这些2D材料和器件的力学性能的理论多尺度建模和模拟将反馈给实验团队,以实现应变控制量子材料的全部潜力。该项目由量子飞跃大创意计划和电气,通信,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strain engineering of vertical molybdenum ditelluride phase-change memristors
- DOI:10.1038/s41928-023-01071-2
- 发表时间:2023-08
- 期刊:
- 影响因子:34.3
- 作者:W. Hou;Ahmad Azizimanesh;Aditya Dey;Yufeng Yang;Wuxiucheng Wang;Chen Shao;Hui Wu;H. Askari;Sobhit Singh;Stephen M. Wu
- 通讯作者:W. Hou;Ahmad Azizimanesh;Aditya Dey;Yufeng Yang;Wuxiucheng Wang;Chen Shao;Hui Wu;H. Askari;Sobhit Singh;Stephen M. Wu
Ultrasonic delamination based adhesion testing for high-throughput assembly of van der Waals heterostructures
- DOI:10.1063/5.0126446
- 发表时间:2022-10
- 期刊:
- 影响因子:3.2
- 作者:Tara Peña;Jewel Holt;Arfan Sewaket;Stephen M. Wu
- 通讯作者:Tara Peña;Jewel Holt;Arfan Sewaket;Stephen M. Wu
Long-Distance Superexchange between Semiconductor Quantum-Dot Electron Spins
半导体量子点电子自旋之间的长距离超级交换
- DOI:10.1103/physrevlett.126.017701
- 发表时间:2021
- 期刊:
- 影响因子:8.6
- 作者:Qiao, Haifeng;Kandel, Yadav P.;Fallahi, Saeed;Gardner, Geoffrey C.;Manfra, Michael J.;Hu, Xuedong;Nichol, John M.
- 通讯作者:Nichol, John M.
Nonvolatile Ferroelastic Strain from Flexoelectric Internal Bias Engineering
- DOI:10.1103/physrevapplied.17.024013
- 发表时间:2022-02
- 期刊:
- 影响因子:4.6
- 作者:W. Hou;S. Chowdhury;Aditya Dey;C. Watson;Tara Peña;Ahmad Azizimanesh;H. Askari;Stephen M. Wu
- 通讯作者:W. Hou;S. Chowdhury;Aditya Dey;C. Watson;Tara Peña;Ahmad Azizimanesh;H. Askari;Stephen M. Wu
Temperature and time stability of process-induced strain engineering on 2D materials
- DOI:10.1063/5.0075917
- 发表时间:2022-01
- 期刊:
- 影响因子:3.2
- 作者:Tara Peña;Ahmad Azizimanesh;Liangyu Qiu;Arunabh Mukherjee;A. N. Vamivakas;Stephen M. Wu
- 通讯作者:Tara Peña;Ahmad Azizimanesh;Liangyu Qiu;Arunabh Mukherjee;A. N. Vamivakas;Stephen M. Wu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Wu其他文献
An Evaluation of the Relationship Between Medication Regimen Complexity as Measured by the MRC-ICU to Medication Errors in Critically Ill Patients
MRC-ICU 测量的用药方案复杂性与危重患者用药错误之间关系的评估
- DOI:
10.1177/00185787231170386 - 发表时间:
2023 - 期刊:
- 影响因子:0.7
- 作者:
A. Chase;Hanna A Azimi;C. Forehand;K. Keats;Ashley M. Taylor;Stephen Wu;Kaitlin Blotske;A. Sikora - 通讯作者:
A. Sikora
Towards an Understanding of Scalable Query and Data Analysis for Social Media Data using High-Level Dataflow Systems
了解使用高级数据流系统的社交媒体数据的可扩展查询和数据分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Stephen Wu;J. Qiu - 通讯作者:
J. Qiu
Faster and More Accurate Earthquake Early Warning System
更快更准的地震预警系统
- DOI:
10.5610/jaee.14.4_21 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. Yamada;K. Tamaribuchi;Stephen Wu - 通讯作者:
Stephen Wu
Bio-image informatics for whole brain imaging and analysis of neural activity of C. elegans
线虫全脑成像和神经活动分析的生物图像信息学
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yu Toyoshima;Stephen Wu;Manami Kanamori;Hirofumi Sato;Moon Sun Jang;Yuko Murakami;Suzu Oe;Terumasa Tokunaga;Osamu Hirose;Sayuri Kuge;Takayuki Teramoto;Yuishi Iwasaki;Ryo Yoshida;Takeshi Ishihara;Yuichi Iino - 通讯作者:
Yuichi Iino
A pipeline of bio-image informatics for whole-brain imaging of C. elegans and analysis of the neural activity
用于线虫全脑成像和神经活动分析的生物图像信息学流程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yu Toyoshima;Stephen Wu;Manami Kanamori;Hirofumi Sato;Moon Sun Jang;Yuko Murakami;Suzu Oe;Terumasa Tokunaga;Osamu Hirose;Sayuri Kuge;Takayuki Teramoto;Yuishi Iwasaki;Ryo Yoshida;Takeshi Ishihara;Yuichi Iino - 通讯作者:
Yuichi Iino
Stephen Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Wu', 18)}}的其他基金
CAREER: Strain-driven phase transitions in 2D van der Waals based devices
职业:二维范德华器件中的应变驱动相变
- 批准号:
1942815 - 财政年份:2020
- 资助金额:
$ 154.92万 - 项目类别:
Continuing Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 154.92万 - 项目类别:
Standard Grant