QII-TAQS: Enhancing Quantum Coherence by Dissipation in Programmable Atomic Arrays
QII-TAQS:通过可编程原子阵列中的耗散增强量子相干性
基本信息
- 批准号:1936359
- 负责人:
- 金额:$ 199.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum systems with robust coherence are essential in the quest for controllable and scalable quantum technologies. For example, highly coherent quantum systems are needed for the construction of quantum sensors, which can measure time, electromagnetic forces, and gravity with the highest precision, and for a future quantum computer, which promises to speed up data processing to levels unachievable with conventional silicon-based computer technology. However, most of today's quantum applications rely on the limited coherence of individual quantum systems, such as nuclear spins, electron spins, or electronic excitations. This project will demonstrate that coherence can be boosted beyond the limitations of individual quantum systems. The researchers will exploit collective effects in ordered atomic arrays, in which individual atoms will be trapped in close proximity. In this special arrangement the atoms will interact and are expected to display subradiance - a quantum mechanical effect that prevents the atoms from losing internal quantum excitations - which will boost the coherence of atomic quantum systems. To realize these novel concepts experimentally, the researchers will develop and implement a novel nanophotonic platform to trap and position individual atoms with optical tweezers, miniature traps made out of laser light. The project will train undergraduate and graduate students in experimental and theoretical atomic physics, quantum optics, and nanophotonics, and thereby contribute to a highly trained workforce in quantum science and technology.The research team combines expertise in theoretical quantum optics, experimental atomic physics, and nanophotonics. The experimental system will rely on arrays of laser-cooled strontium atoms trapped by optical tweezers with sub-micrometer spacings. The tweezer array will be generated via projection through a holographic spatial light modulator that will allow for independent control of both the intensity and phase of the trapping light field and enable the generation of optical arrays with unprecedented accuracy and high-speed tunability. With interatomic distances comparable to the atomic resonance wavelength, interference in photon emission gives rise to strongly correlated atomic states that are protected from decay, and thus have substantially longer coherence times than a single atom in free space. The researchers will develop protocols, both theoretically and experimentally, that enable accessing and exploiting the unconventional physical properties of these exotic quantum states. This project is jointly funded by the Quantum Leap Big Idea Program and the Office of International Science and Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有强大相干性的量子系统对于寻求可控和可扩展的量子技术至关重要。例如,需要高度相干的量子系统来构建量子传感器,它可以以最高的精度测量时间,电磁力和重力,以及未来的量子计算机,它有望将数据处理速度提高到传统硅基计算机技术无法实现的水平。然而,今天的大多数量子应用依赖于单个量子系统的有限相干性,例如核自旋,电子自旋或电子激发。该项目将证明相干性可以超越单个量子系统的限制。研究人员将利用有序原子阵列中的集体效应,其中单个原子将被紧密地捕获。在这种特殊的排列中,原子将相互作用,并有望显示亚辐射-一种防止原子失去内部量子激发的量子力学效应-这将提高原子量子系统的相干性。为了在实验上实现这些新概念,研究人员将开发和实现一种新型的纳米光子平台,用光镊捕获和定位单个原子,光镊是由激光制成的微型陷阱。该项目将培养实验和理论原子物理学、量子光学和纳米光子学的本科生和研究生,从而为量子科学和技术领域训练有素的劳动力做出贡献。研究团队结合了理论量子光学、实验原子物理学和纳米光子学的专业知识。该实验系统将依赖于激光冷却的锶原子阵列,这些原子被亚微米间距的光镊捕获。镊子阵列将通过全息空间光调制器投影生成,该全息空间光调制器将允许独立控制捕获光场的强度和相位,并能够生成具有前所未有的精度和高速可调谐性的光学阵列。由于原子间距离与原子共振波长相当,光子发射的干涉产生了强相关的原子态,这些原子态被保护免受衰变,因此具有比自由空间中的单个原子长得多的相干时间。研究人员将在理论和实验上开发协议,以便访问和利用这些奇异量子态的非常规物理特性。该项目由Quantum Leap Big Idea Program和国际科学与工程办公室共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Directional transport along an atomic chain
- DOI:10.1103/physreva.105.043703
- 发表时间:2022-04-04
- 期刊:
- 影响因子:2.9
- 作者:Gutierrez-Jauregui,R.;Asenjo-Garcia,A.
- 通讯作者:Asenjo-Garcia,A.
Coherent control in atomic chains: To trap and release a traveling excitation
原子链中的相干控制:捕获和释放行进激发
- DOI:10.1103/physrevresearch.4.013080
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Gutiérrez-Jáuregui, R.;Asenjo-Garcia, A.
- 通讯作者:Asenjo-Garcia, A.
AMS-02 antiprotons' consistency with a secondary astrophysical origin
- DOI:10.1103/physrevresearch.2.023022
- 发表时间:2019-06
- 期刊:
- 影响因子:4.2
- 作者:M. Boudaud;Y. G'enolini;L. Derome;J. Lavalle;D. Maurin;P. Salati;P. Serpico
- 通讯作者:M. Boudaud;Y. G'enolini;L. Derome;J. Lavalle;D. Maurin;P. Salati;P. Serpico
Many-Body Signatures of Collective Decay in Atomic Chains.
原子链集体衰变的多体特征。
- DOI:10.1103/physrevlett.125.263601
- 发表时间:2020
- 期刊:
- 影响因子:8.6
- 作者:Stuart J. Masson;I. Ferrier;L. Orozco;A. Browaeys;A. Asenjo
- 通讯作者:A. Asenjo
Jet-loaded cold atomic beam source for strontium
用于锶的喷射式冷原子束源
- DOI:10.1063/5.0131429
- 发表时间:2023
- 期刊:
- 影响因子:1.6
- 作者:Kwon, Minho;Holman, Aaron;Gan, Quan;Liu, Chun-Wei;Molinelli, Matthew;Stevenson, Ian;Will, Sebastian
- 通讯作者:Will, Sebastian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian Will其他文献
Workshop on Constraint Based Methods for Bioinformatics Constraint-based Modeling in Systems Biology Minimizing Sets of Enzymes to Differentiate between Species
生物信息学基于约束的方法研讨会系统生物学中基于约束的建模最小化酶组以区分物种
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
A. D. Palù;A. Dovier;Sebastian Will;A. Bockmayr;David Buezas;Joao Almeida;Pedro Barahona;A. Favier;Jean;S. D. Givry;Andrés Legarra;Mathias Möhl;C. Heldt;Alejandro Arbelaez;Y. Hamadi;Michèle Sebag;Martin Mann;Takehide Soh;Katsumi Inoue;A. Policriti - 通讯作者:
A. Policriti
The locality dilemma of Sankoff-like RNA alignments
类似 Sankoff 的 RNA 比对的局部性困境
- DOI:
10.1093/bioinformatics/btaa431 - 发表时间:
2020 - 期刊:
- 影响因子:5.8
- 作者:
Teresa Müller;Milad Miladi;Frank Hutter;Ivo Hofacker;Sebastian Will;Rolf Backofen - 通讯作者:
Rolf Backofen
Assessing metabarcoding-based identifications for monitoring beetle communities in temperate forests
评估基于元条形码的鉴定用于监测温带森林中的甲虫群落
- DOI:
10.1016/j.baae.2025.04.005 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:3.500
- 作者:
R․G․Bina Perl;Alexander Schneider;Julio V. Schneider;Viktor Hartung;Angela Röhner;Sebastian Will;Steffen U. Pauls - 通讯作者:
Steffen U. Pauls
Standard Form 298
标准表格 298
- DOI:
10.1016/j.physletb.2015.10.005 - 发表时间:
2012 - 期刊:
- 影响因子:4.4
- 作者:
M. Zwierlein;A. Sommer;L. Cheuk;J. Ku;Waseem S Bakr;M. W;Mohit Randeria;M. Ku;K. V. Houcke;Frank Werner;E. Kozik;N. Prokofev;B. Svistunov;M. Ku;A. Sommer;L. Cheuk;A. Schirotzek;M. Zwierlein;Jee Woo Park;Cheng;Ibon Santiago;Tobias G Tiecke;Peyman Ahmadi;Zoran Hadzibabic;Tarik Yefsah;Na;K. Cheng;Jee Woo Wu;Peyman Park;S. Ahmadi;Martin Will;Zwierlein;Ariel;T. Sommer;Mark;J. Ku;W. Zwerger;F. K. V. Houcke;E. Werner;N. Kozik;B. Prokofev;M. Svistunov;A. Ku;L. Sommer;A. Cheuk;M. W. Schirotzek;Jee;W. Park;Lawrence;W. Cheuk;Cheng;M Randeria;W. Zwerger;M. Zwierlein;J. W. Park;Tobias G Tiecke;M. Zwierlein;Van Houcke;K. V. Houcke;Felix Werner;E. Kozik;Nikolay Prokof 'ev;B. Svistunov;M. Ku;A. Sommer;L. Cheuk;A. Schirotzek;Waseem S Bakr;Sebastian Will;C. - 通讯作者:
C.
Constraint‐Based Methods for Bioinformatics
基于约束的生物信息学方法
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
A. D. Palù;A. Dovier;François Fages;Sebastian Will - 通讯作者:
Sebastian Will
Sebastian Will的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian Will', 18)}}的其他基金
NSF Convergence Accelerator Track C: Cloud-Accessible Integrated Quantum Simulator Based on Programmable Atom Arrays
NSF 融合加速器轨道 C:基于可编程原子阵列的可云访问的集成量子模拟器
- 批准号:
2040702 - 财政年份:2020
- 资助金额:
$ 199.5万 - 项目类别:
Standard Grant
CAREER: Two-Dimensional Quantum Fabric of Ultracold Dipolar Molecules
职业:超冷偶极分子的二维量子结构
- 批准号:
1848466 - 财政年份:2019
- 资助金额:
$ 199.5万 - 项目类别:
Continuing Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 199.5万 - 项目类别:
Standard Grant