Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
基本信息
- 批准号:10722432
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-02 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAdhesivesApoptosisBehaviorBindingBiochemicalBiocompatible MaterialsBiological MarkersBiomimeticsBlood PlateletsBlood VesselsCalciumCalpainCardiovascular systemCell DeathCell TherapyCell modelCellsCoculture TechniquesCommunicationComplexCouplingCytoplasmic GranulesDataDevelopmentDiseaseEncapsulatedEndothelial CellsEngineeringEnvironmentEnzymesEpidermal Growth Factor ReceptorExocytosisExtracellular MatrixFosteringFutureGoalsGrowthHealthHuman bodyHybridsImmunotherapyIn VitroLateralLigandsLipid BilayersLiquid substanceLocationLyticMammalian CellMeasuresMechanicsMediatingMembraneMembrane FusionMissionModelingMonitorMorphologyOxidation-ReductionPathologyPatientsPeptidesPhysiologicalPolymersProbabilityProcessProliferatingPropertyPublic HealthResearchResearch PersonnelSignal TransductionSignal Transduction PathwaySpecificityStimulusSurfaceSystemT-LymphocyteTechniquesTestingTherapeuticTissuesUnited States National Institutes of HealthVariantVascular Endothelial Growth FactorsVesicleWorkbiological adaptation to stresscancer cellcell killingcell typechimeric antigen receptordensityexosomeexperiencehemodynamicsimprovedinnovationintercellular communicationinterestmechanical forcemechanotransductionmembrane reconstitutionnovelpreventreceptor bindingreconstitutionresponseshear stressstem cellssuccesssynthetic biologytechnology platformtooltumor
项目摘要
Project Summary
Our abilities to engineer synthetic cell systems that can communicate with living cells remain limited. The
long-term goal is to engineer cell-like systems with increasingly complex biomimetic functions that can serve
as cell replacement or augment functions of natural cells. The objective of this proposal is to develop a
mechanosensitive synthetic cell that can respond to an increase in shear stress, which is most prevalent in
the cardiovascular system, and secrete bioactive molecules to effect living cells. Cells in our bodies
constantly sense and respond to microenvironmental stimuli, including passive and active physical stimuli,
such as extracellular matrix rigidity, adhesive ligand density, tension, compression, and fluid shear flow. The
rationale underlying this proposal is that completion will result in a novel biomimetic cell-like system as a
novel shear stress-responsive ‘material’ that can interface with natural living cells. The majority of
engineered biomaterials respond to differences in the biochemical environment (e.g. differences in redox,
pH, and enzyme composition) between normal and diseased tissues. By comparison, there has been
relatively less effort in exploiting forces for stimulus-responsive behaviors. The synthetic cell idea is inspired
by natural platelets’ ability to bind and respond to elevated shear stress and secrete granule contents when
bound to a surface. The proposed work consists of three specific aims: 1) Characterize shear stress
response of mechanosensing vesicles, 2) Couple mechanosensing with exocytosis in synthetic cells, 3)
Test intercellular communication of shear stress-activated synthetic cells with endothelial cells in vitro. We
will pursue these aims using an innovative approach of repurposing mechanosensitive channel for shear
stress sensing and using peptide-based membrane fusion. Our lab was the first group to demonstrate
mechanosensing synthetic cells and we have significant expertise in bottom-up synthetic biology. The
proposed research is significant, because it will be the first synthetic cell system developed to communicate
with mammalian cells using calcium-triggered secretion. The work will develop fundamental strategies for
coupling mechanosensing to a biochemical response in synthetic cells. This will open new avenue for other
researchers interested in developing more complex cell-like systems. The results will have an important
positive impact immediately because it will support the idea that mechanosensitive channels can sense
lateral membrane tension due to shear stress and long-term because they lay the groundwork of
engineering synthetic cells with other sensing abilities.
项目总结
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Membrane stretching activates calcium permeability of a putative channel Pkd2 during fission yeast cytokinesis.
- DOI:10.1091/mbc.e22-07-0248
- 发表时间:2022-12-01
- 期刊:
- 影响因子:3.3
- 作者:Poddar, Abhishek;Hsu, Yen-Yu;Zhang, Faith;Shamma, Abeda;Kreais, Zachary;Muller, Clare;Malla, Mamata;Ray, Aniruddha;Liu, Allen P.;Chen, Qian
- 通讯作者:Chen, Qian
Hybrid Vesicles Enable Mechano-Responsive Hydrogel Degradation.
混合囊泡可实现机械响应水凝胶降解。
- DOI:10.1002/anie.202308509
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hwang,Sung-Won;Lim,Chung-Man;Huynh,CongTruc;Moghimianavval,Hossein;Kotov,NicholasA;Alsberg,Eben;Liu,AllenP
- 通讯作者:Liu,AllenP
Methods to mechanically perturb and characterize GUV-based minimal cell models.
- DOI:10.1016/j.csbj.2022.12.025
- 发表时间:2023
- 期刊:
- 影响因子:6
- 作者:Wubshet, Nadab H.;Liu, Allen P.
- 通讯作者:Liu, Allen P.
Fascin-induced actin protrusions are suppressed by dendritic networks in giant unilamellar vesicles.
- DOI:10.1091/mbc.e21-02-0080
- 发表时间:2021-08-19
- 期刊:
- 影响因子:3.3
- 作者:Wubshet NH;Bashirzadeh Y;Liu AP
- 通讯作者:Liu AP
In Vitro Reconstitution Platforms of Mammalian Cell-Free Expressed Membrane Proteins.
- DOI:10.1007/978-1-0716-1998-8_6
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Moghimianavval H;Hsu YY;Groaz A;Liu AP
- 通讯作者:Liu AP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allen Po-Chih Liu其他文献
Allen Po-Chih Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allen Po-Chih Liu', 18)}}的其他基金
Sensing and modulating the chemokine environment with synthetic cells
用合成细胞感知和调节趋化因子环境
- 批准号:
10566980 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10643814 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10251872 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10031135 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10544399 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
Reconstituting Biology – a Chart to Minimal Cells
重建生物学——最小细胞图表
- 批准号:
2013809 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Development of a mechanosensitive synthetic cell for mediating intercellular communication.
开发用于介导细胞间通讯的机械敏感合成细胞。
- 批准号:
10396123 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
ST2: Programmable Interfaces- Exploring the Intersection of Synthetic Biology, Biomaterials, and Soft Matter
ST2:可编程接口 - 探索合成生物学、生物材料和软物质的交叉点
- 批准号:
1939310 - 财政年份:2019
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
ISS: Cellular Mechanotransduction by Osteoblasts in Microgravity
ISS:微重力下成骨细胞的细胞力转导
- 批准号:
1927803 - 财政年份:2019
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Investment Accelerator














{{item.name}}会员




