CAREER: Enabling the Design of Versatile Hybrid Materials using Polymerization-Induced Nanostructural Transitions

职业:利用聚合诱导的纳米结构转变实现多功能混合材料的设计

基本信息

  • 批准号:
    1942508
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Part 1: NON-TECHNICAL SUMMARYAchieving simultaneous maximization of contrasting materials properties such as toughness and modulus is a daunting challenge for single-component materials. Biology is able to diverge from the inherent limitations of single-component materials by hierarchically organizing multiple components (biopolymers and minerals) with disparate physical properties. The static structure and hierarchical order of biomaterials is only part of the story; biology and living systems create complex materials through nonequilibrium processes. The goal of the CAREER proposal is to investigate nonequilibrium chemical functionalization and self-assembly methods to create multifunctional hybrid polymeric/inorganic materials. Two polymer/nanoparticle material systems will be explored: 1) flexible and electrically conductive co-continuous networks and 2) nanostructured materials exhibiting exceptional strain-stiffening mechanical properties. Establishing and integrating nonequilibrium chemical processes into materials design will potentially lead to new materials with applications in infrastructure, transportation, health care, and information processing. The research aims of the proposal will be integrated into teaching methods by: 1) developing polymer/materials science modules and labs for professors at nondoctorate-granting institutions within Pennsylvania to augment the undergraduate curriculum and 2) creating open-access video-standard operating procedures (VSOP) for all interested researchers to learn detailed methods for polymer synthesis, sample preparation, and characterization.Part 2: TECHNICAL SUMMARYThe hybrid polymer/inorganic materials field has been working under the premise that equilibrium concepts will lead to the complex materials seen in nature, yet biology utilizes nonequilibrium processes to create biomaterials. The overarching aim of the proposal is to identify design criteria using nonequilibrium chemical functionalization and self-assembly methods to create multifunctional hybrid polymeric/inorganic materials via polymerization-induced nanostructural transitions. In this research, in-situ polymer grafting and in-situ block polymer synthetic methods from polymers attached to nanoparticle surfaces will be used to create flexible and electrically conductive co-continuous networks and nanostructured materials exhibiting strain-stiffening properties. The synthetic approach used here will facilitate complex polymer architecture formation in situ and will generate hierarchically ordered materials in which polymer and nanoparticle domains are organized from the nanometer to the micrometer scale. Characterization methods using X-ray and neutron scattering, oscillatory shear dynamic mechanical spectroscopy, and dielectric relaxation spectroscopy during polymerization will reveal the self-assembly mechanism, and lead to fundamental insight for designing hierarchically-ordered materials. Merging in-situ polymerization and structural characterization to investigate structure-property relationships will establish foundational science in nonequilibrium processing that mimics natural systems and harnesses simultaneous property combinations, which are not currently possible in hybrid polymer/inorganic materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分:非技术总结对于单组分材料而言,同时实现材料特性(如韧性和模量)的最大化是一项艰巨的挑战。生物学能够通过分层组织具有不同物理特性的多个组分(生物聚合物和矿物)来摆脱单组分材料的固有局限性。生物材料的静态结构和等级秩序只是故事的一部分;生物学和生命系统通过非平衡过程创造复杂的材料。CAREER提案的目标是研究非平衡化学功能化和自组装方法,以创建多功能混合聚合物/无机材料。将探索两种聚合物/纳米颗粒材料系统:1)柔性和导电的共连续网络和2)表现出特殊的应变硬化机械性能的纳米结构材料。建立非平衡化学过程并将其集成到材料设计中,将有可能导致新材料在基础设施,交通,医疗保健和信息处理中的应用。该提案的研究目标将通过以下方式整合到教学方法中:1)为宾夕法尼亚州非博士授予机构的教授开发聚合物/材料科学模块和实验室,以增加本科课程; 2)为所有感兴趣的研究人员创建开放访问视频标准操作程序(VSOP),以了解聚合物合成,样品制备和表征的详细方法。混合聚合物/无机材料领域一直在平衡概念将导致自然界中看到的复杂材料的前提下工作,而生物学利用非平衡过程来创建生物材料。该提案的总体目标是确定设计标准,使用非平衡化学功能化和自组装方法,通过聚合诱导的纳米结构转变来创建多功能混合聚合物/无机材料。在这项研究中,原位聚合物接枝和原位嵌段聚合物合成方法从聚合物连接到纳米颗粒表面将被用来创建灵活的和导电的共连续网络和纳米结构材料表现出应变硬化性能。这里使用的合成方法将促进复杂的聚合物结构的形成在原位,并将产生层次有序的材料,其中聚合物和纳米颗粒域组织从纳米到微米尺度。使用X射线和中子散射,振荡剪切动态力学光谱,和介电弛豫光谱在聚合过程中的表征方法将揭示自组装机制,并导致设计层次有序材料的基本见解。结合原位聚合和结构表征来研究结构-性能关系,将建立非平衡处理的基础科学,该过程模拟自然系统并利用同时的性能组合,这在杂化聚合物中目前是不可能的,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Soft Hybrid Elastomers Containing Polymer Grafted Nanoparticles
  • DOI:
    10.1016/j.giant.2022.100133
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Jensen N. Sevening;Siyana Dottin;Vincent M. Torres;R. Hickey
  • 通讯作者:
    Jensen N. Sevening;Siyana Dottin;Vincent M. Torres;R. Hickey
Investigating Nanoparticle Organization in Polymer Matrices during Reaction-Induced Phase Transitions and Material Processing
  • DOI:
    10.1021/acsami.1c14830
  • 发表时间:
    2021-08-25
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    LaNasa, Jacob A.;Neuman, Anastasia;Hickey, Robert J.
  • 通讯作者:
    Hickey, Robert J.
Surface-Initiated Ring-Opening Metathesis Polymerization: A Method for Synthesizing Polymer-Functionalized Nanoparticles Exhibiting Semicrystalline Properties and Diverse Macromolecular Architectures
  • DOI:
    10.1021/acs.macromol.0c01381
  • 发表时间:
    2020-10-13
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    LaNasa, Jacob A.;Hickey, Robert J.
  • 通讯作者:
    Hickey, Robert J.
Controlling Polymer Material Structure during Reaction-Induced Phase Transitions
  • DOI:
    10.1021/accountsmr.3c00071
  • 发表时间:
    2023-07-24
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Hickey,Robert J.
  • 通讯作者:
    Hickey,Robert J.
Investigating the morphological transitions in an associative surfactant ternary system
研究缔合表面活性剂三元体系的形态转变
  • DOI:
    10.1039/d1sm01668g
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Honaryar, Houman;LaNasa, Jacob A.;Hickey, Robert J.;Shillcock, Julian C.;Niroobakhsh, Zahra
  • 通讯作者:
    Niroobakhsh, Zahra
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Hickey其他文献

Disrupting Mitochondrial Dynamics and Metabolism in Leukemic Stem Cells through Mitochondrial PCNA Inhibition: The Role of AOH1996
  • DOI:
    10.1182/blood-2024-211269
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Hyunjun Kang;Melissa Valerio;Jia Feng;Long Gu;Dinh Hoa Hoang;Shawn Sharkas;Khyatiben V. Pathak;Jennifer Jossart;Yuriy Shostak;Zhuo Li;Bin Zhang;Patrick Pirrotte;Jefferson Perry;Robert Hickey;Linda H Malkas;Guido Marcucci;Le Xuan Truong Nguyen
  • 通讯作者:
    Le Xuan Truong Nguyen

Robert Hickey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Hickey', 18)}}的其他基金

Collaborative Research: Controlling Nanoscale Self-Assembly via Binding-Induced Polarization
合作研究:通过结合诱导极化控制纳米级自组装
  • 批准号:
    2203675
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Driven Design of Synthetic Tissue-Like Multifunctional Materials
DMREF/合作研究:合成组织类多功能材料的计算驱动设计
  • 批准号:
    2119717
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Developing and enabling efficient hypothesis test for response-adaptive design with patient benefit goals
开发并启用有效的假设检验,以实现具有患者利益目标的响应自适应设计
  • 批准号:
    MR/Z503538/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
  • 批准号:
    2340267
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
  • 批准号:
    2346091
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
  • 批准号:
    10710974
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Enabling the Circular Economy through Enhanced Recovery and Design
通过加强回收和设计实现循环经济
  • 批准号:
    RGPIN-2021-03389
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Development of advanced molecular transformations based on innovative molecular design of higher order organosuperbase catalysts enabling molecular recognition
基于高阶有机超碱催化剂的创新分子设计开发先进的分子转化,从而实现分子识别
  • 批准号:
    22H00319
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Enabling Molecular Computing: New approaches to the design and investigation of molecular junctions and quantum bits
实现分子计算:设计和研究分子结和量子位的新方法
  • 批准号:
    RGPIN-2021-02487
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Enabling Large-scale Multidisciplinary Design Optimization with Unsteady Simulations: A Hybrid Pseudo-spectral Approach
协作研究:通过非定常模拟实现大规模多学科设计优化:混合伪谱方法
  • 批准号:
    2223676
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了