Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
基本信息
- 批准号:2346091
- 负责人:
- 金额:$ 27.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There has been a tremendous demand for bringing Deep Neural Network (DNN) powered functionality into Internet of Thing (IoT) devices to enable ubiquitous intelligent "IoT cameras". However, state-of-the-art DNNs have a prohibitive energy cost, making them impractical to be deployed in resource-constrained IoT platforms. This project will develop a novel energy-efficient DNN framework, via a systematic integration of platform, hardware, and algorithm co-design innovations. Despite a growing interest in energy-efficient DNNs, existing techniques lack a systematic optimization across the full stack of design abstraction, from systems through algorithms to hardware implementation. The proposed research advocates an innovative, holistic effort towards energy-efficient and adaptive DNN-powered "IoT cameras" by jointly optimizing the platform-, hardware-, and algorithm-level co-design efforts. On the system level, we will address how to automatically generate and adapt DNN models and implementation, to meet a variety of "IoT devices" application-specific performance needs and device-specific resource constraints. On the hardware level, we will leverage the observed high sparsity in DNN activations for energy-efficient hardware implementations of both DNN training and inference by using low-cost zero predictors and hence bypass unnecessary computations. On the algorithm level, we will develop innovative factorized sparsity regularization in DNN training as well as efficient, controllable adaptive inference mechanisms, fully complementing and closely integrating with our hardware innovations. The proposed research will advance the scientific domain of each level, from system and algorithm, to hardware and a holistic, systematic cross-level methodology for designing energy-efficient intelligent systems. Progress on this project will enable ubiquitous DNN-powered intelligent functions in a significantly increased number of resource-constrained daily-life devices, across numerous camera-based Internet-of-Things (IoT) applications such as traffic monitoring, self-driving and smart cars, personal digital assistants, surveillance and security, and augmented reality. As camera-based IoT devices penetrate all walks of life, by enabling DNN-powered intelligence to be pervasive in these devices, the proposed research can have a tremendous impact on global societies and economies. The research will be integrated with education on energy efficient deep learning. Educational activities include curriculum development, undergraduate research, and outreach to K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将深度神经网络(DNN)功能的功能带入物联网(IoT)设备以实现无处不在的智能“ IoT相机”的需求。但是,最先进的DNN的能源成本过高,使其不切实际地部署在资源受限的物联网平台中。该项目将通过平台,硬件和算法共同设计创新的系统集成来开发一种新型的节能DNN框架。尽管对节能DNN的兴趣越来越大,但现有技术仍缺乏整个设计抽象堆栈的系统优化,从系统到算法到硬件实现。拟议的研究主张通过共同优化平台,硬件和算法级的共同设计工作来提倡为节能和适应性DNN驱动的“物联网相机”进行创新的整体努力。在系统级别上,我们将讨论如何自动生成和调整DNN模型和实现,以满足各种“ IoT设备”特定于应用程序的性能需求和特定于设备的资源约束。在硬件级别上,我们将利用DNN激活中观察到的高稀疏性来通过使用低成本零预测变量,从而绕过不必要的计算,从而为DNN培训和推理提供节能硬件实现。在算法级别上,我们将在DNN培训以及高效,可控制的自适应推理机制中开发创新的分解稀疏性,并与我们的硬件创新完全补充并密切相结合。 拟议的研究将使每个级别的科学领域从系统和算法中推进到硬件和整体,系统的跨层次方法,用于设计节能智能系统。该项目的进展将在许多基于摄像机的电池Inforet(IoT)应用程序(例如交通监视,自动驾驶和智能汽车,个人数字助理,监视和安全性以及增强现实现实)等众多基于摄像机的电池互联网应用程序(IOT)应用程序中,使无处不在的DNN驱动智能功能能够显着增加。由于基于摄像机的物联网设备可以通过使DNN驱动的智能在这些设备中具有广泛性来渗透到各行各业时,拟议的研究可能会对全球社会和经济产生巨大影响。 该研究将与能源有效的深度学习有关。 教育活动包括课程开发,本科研究和向K-12学生推广。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ViTCoD: Vision Transformer Acceleration via Dedicated Algorithm and Accelerator Co-Design
- DOI:10.1109/hpca56546.2023.10071027
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Haoran You;Zhanyi Sun;Huihong Shi;Zhongzhi Yu;Yang Zhao;Yongan Zhang;Chaojian Li;Baopu Li;Yingyan Lin
- 通讯作者:Haoran You;Zhanyi Sun;Huihong Shi;Zhongzhi Yu;Yang Zhao;Yongan Zhang;Chaojian Li;Baopu Li;Yingyan Lin
Robust Tickets Can Transfer Better: Drawing More Transferable Subnetworks in Transfer Learning
- DOI:10.1109/dac56929.2023.10247920
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Y. Fu;Ye Yuan;Shang Wu;Jiayi Yuan;Yingyan Lin
- 通讯作者:Y. Fu;Ye Yuan;Shang Wu;Jiayi Yuan;Yingyan Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yingyan Lin其他文献
Variation-Tolerant Architectures for Convolutional Neural Networks in the Near Threshold Voltage Regime
近阈值电压范围内卷积神经网络的抗变化架构
- DOI:
10.1109/sips.2016.11 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yingyan Lin;Sai Zhang;Naresh R Shanbhag - 通讯作者:
Naresh R Shanbhag
A Rank Decomposed Statistical Error Compensation Technique for Robust Convolutional Neural Networks in the Near Threshold Voltage Regime
近阈值电压范围内鲁棒卷积神经网络的秩分解统计误差补偿技术
- DOI:
10.1007/s11265-018-1332-4 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yingyan Lin;Sai Zhang;Naresh R Shanbhag - 通讯作者:
Naresh R Shanbhag
NeRFool: Uncovering the Vulnerability of Generalizable Neural Radiance Fields against Adversarial Perturbations
NeRFool:揭示可推广神经辐射场对抗对抗性扰动的脆弱性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Y. Fu;Ye Yuan;Souvik Kundu;Shang Wu;Shunyao Zhang;Yingyan Lin - 通讯作者:
Yingyan Lin
Instant-NeRF: Instant On-Device Neural Radiance Field Training via Algorithm-Accelerator Co-Designed Near-Memory Processing
Instant-NeRF:通过算法加速器共同设计的近内存处理进行即时设备上神经辐射现场训练
- DOI:
10.1109/dac56929.2023.10247710 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yang Zhao;Shang Wu;Jingqun Zhang;Sixu Li;Chaojian Li;Yingyan Lin - 通讯作者:
Yingyan Lin
NetBooster: Empowering Tiny Deep Learning By Standing on the Shoulders of Deep Giants
NetBooster:站在深度巨人的肩膀上,为微小的深度学习赋能
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhongzhi Yu;Y. Fu;Jiayi Yuan;Haoran You;Yingyan Lin - 通讯作者:
Yingyan Lin
Yingyan Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yingyan Lin', 18)}}的其他基金
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
- 批准号:
2345577 - 财政年份:2023
- 资助金额:
$ 27.23万 - 项目类别:
Continuing Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
- 批准号:
2312758 - 财政年份:2023
- 资助金额:
$ 27.23万 - 项目类别:
Continuing Grant
SHF: Medium:DILSE: Codesigning Decentralized Incremental Learning System via Streaming Data Summarization on Edge
SHF:Medium:DILSE:通过边缘流数据汇总共同设计去中心化增量学习系统
- 批准号:
2211815 - 财政年份:2022
- 资助金额:
$ 27.23万 - 项目类别:
Continuing Grant
CAREER: Differentiable Network-Accelerator Co-Search Towards Ubiquitous On-Device Intelligence and Green AI
职业生涯:可微分网络加速器联合搜索,实现无处不在的设备智能和绿色人工智能
- 批准号:
2048183 - 财政年份:2021
- 资助金额:
$ 27.23万 - 项目类别:
Continuing Grant
NSF Workshop: Machine Learning Hardware Breakthroughs Towards Green AI and Ubiquitous On-Device Intelligence. To be Held in November 2020.
NSF 研讨会:机器学习硬件突破绿色人工智能和无处不在的设备智能。
- 批准号:
2054865 - 财政年份:2020
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
CCRI: Medium: Collaborative Research: 3DML: A Platform for Data, Design and Deployed Validation of Machine Learning for Wireless Networks and Mobile Applications
CCRI:媒介:协作研究:3DML:无线网络和移动应用机器学习的数据、设计和部署验证平台
- 批准号:
2016727 - 财政年份:2020
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937592 - 财政年份:2019
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Intelligent Cameras in Internet-of-Things via a Holistic Platform, Algorithm, and Hardware Co-design
协作研究:通过整体平台、算法和硬件协同设计实现物联网中的智能相机
- 批准号:
1934767 - 财政年份:2019
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 27.23万 - 项目类别:
Standard Grant