CAREER: Learning in Adversarial and Nonstationary Environments
职业:在对抗性和非平稳环境中学习
基本信息
- 批准号:1943552
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The majority of machine learning algorithms rely on the assumption that data are sampled from a fixed probability distribution. This assumption is often violated in practice, which results in classification and regression strategies that are far from optimal or even reliable. Recent work has shown that an adversary can significantly compromise the outcome of preprocessing techniques and classification. Unfortunately, a unified framework for learning in the presence of an adversary from streaming data has not been addressed despite the growing number of applications that need such techniques. This CAREER will study to understand when and why feature selection fails with an adversary. Not only will this research focus on understanding why feature selection fails, but also the transferability of black and white box attacks on feature selection. This project also proposes to develop novel methods to attack information-theoretic algorithms and approaches for resilient information-theoretic feature selection. This CAREER also addresses the problem of learning in a nonstationary environment with the presence of an adversary. A comprehensive set of synthetic and real-world benchmarks will be performed for each of the tasks. The research focuses on this unmet need and tackles a variety of adversarial learning problems drawn from different subfields of machine learning: specifically, algorithms for feature selection and learning in nonstationary environments.A successful implementation of the proposed research plan will have broader impacts on machine learning and application-driven domains. The education plan includes mentoring and training the future workforce for data scientists, who are currently in high demand, by introducing machine learning through multiple levels of education in a collaborative learning environment at the university. The CAREER project also includes integrated then integration research, revise research and learning with a community-based integration of research in education to draw more students at all levels for STEM and machine learning. This CAREER will engage K-12 students in Tucson to promote STEM education and also machine learning through hands-on teaching techniques. There will also be public talks to the data science community based on the CAREER research outcomes and the most recent trends in machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大多数机器学习算法依赖于数据从固定概率分布中采样的假设。这一假设在实践中经常被违背,导致分类和回归策略远不是最优的,甚至是可靠的。最近的研究表明,对手可以显著损害预处理技术和分类的结果。不幸的是,尽管需要这种技术的应用程序越来越多,但还没有解决一个统一的框架,用于在对手存在的情况下从流数据中学习。本职业将学习理解特征选择何时以及为什么在对手面前失败。本研究不仅关注特征选择失败的原因,还关注特征选择中的黑盒攻击和白盒攻击的可移植性。该项目还提出了开发新的方法来攻击信息理论算法和弹性信息理论特征选择方法。该职业还解决了在有对手存在的非固定环境中学习的问题。将为每个任务执行一组综合的和真实的基准测试。该研究侧重于这一未满足的需求,并解决了来自机器学习不同子领域的各种对抗性学习问题:具体而言,是非平稳环境中特征选择和学习的算法。该研究计划的成功实施将对机器学习和应用驱动领域产生更广泛的影响。该教育计划包括指导和培训目前需求量很大的数据科学家的未来劳动力,在大学的协作学习环境中通过多层次的教育引入机器学习。CAREER项目还包括综合研究,修订研究和学习,以社区为基础的教育研究整合,以吸引更多各级学生参与STEM和机器学习。这个职业将吸引图森的K-12学生,通过实践教学技术促进STEM教育和机器学习。还将根据CAREER的研究成果和机器学习的最新趋势,向数据科学界进行公开讲座。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intelligent Jamming of Deep Neural Network Based Signal Classification for Shared Spectrum
- DOI:10.1109/milcom52596.2021.9653072
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Wenhan Zhang;M. Krunz;G. Ditzler
- 通讯作者:Wenhan Zhang;M. Krunz;G. Ditzler
Data poisoning against information-theoretic feature selection
针对信息论特征选择的数据中毒
- DOI:10.1016/j.ins.2021.05.049
- 发表时间:2021
- 期刊:
- 影响因子:8.1
- 作者:Liu, H.;Ditzler, G.
- 通讯作者:Ditzler, G.
Inter-Architecture Portability of Artificial Neural Networks and Side Channel Attacks
人工神经网络的跨架构可移植性和侧信道攻击
- DOI:10.1145/3526241.3530356
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gopale, Manoj;Ditzler, Gregory;Lysecky, Roman;Roveda, Janet
- 通讯作者:Roveda, Janet
OrderNet: Sorting High Dimensional Low Sample Data with Few-Shot Learning
OrderNet:通过少样本学习对高维低样本数据进行排序
- DOI:10.1109/ijcnn52387.2021.9533766
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hess, Samuel;Ditzler, Gregory
- 通讯作者:Ditzler, Gregory
Adversarial Filters for Secure Modulation Classification
- DOI:10.1109/ieeeconf53345.2021.9723329
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:A. Berian;K. Staab;N. Teku;G. Ditzler;T. Bose;R. Tandon
- 通讯作者:A. Berian;K. Staab;N. Teku;G. Ditzler;T. Bose;R. Tandon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Ditzler其他文献
Gregory Ditzler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Ditzler', 18)}}的其他基金
CAREER: Learning in Adversarial and Nonstationary Environments
职业:在对抗性和非平稳环境中学习
- 批准号:
2247614 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Support of the Doctoral Symposium at the IEEE International Conference on Autonomic Computing (ICAC)
支持 IEEE 国际自主计算会议 (ICAC) 博士研讨会
- 批准号:
1907321 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Proposal for Support of the Doctoral Symposium at the IEEE International Conference on Cloud and Autonomic Computing (ICCAC)
支持 IEEE 国际云与自主计算会议 (ICCAC) 博士生研讨会的提案
- 批准号:
1740456 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Robust Defences against Adversarial Machine Learning for UAV Systems
针对无人机系统对抗性机器学习的稳健防御
- 批准号:
LP230100083 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Linkage Projects
Adversarial Learning Methods for Modeling and Inverse Design of Soft Materials
软材料建模和逆向设计的对抗性学习方法
- 批准号:
2306101 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SLES: CRASH - Challenging Reinforcement-learning based Adversarial scenarios for Safety Hardening
SLES:CRASH - 挑战基于强化学习的安全强化对抗场景
- 批准号:
2331904 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
- 批准号:
2236484 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Data-driven theory : adversarial immunodynamics, modelling and machine learning for engineered lymphocytes in the context of cancer immunotherapy
数据驱动理论:癌症免疫治疗背景下工程淋巴细胞的对抗性免疫动力学、建模和机器学习
- 批准号:
480418 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Operating Grants
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
- 批准号:
2236483 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: SaTC: Applying Adversarial Machine Learning Techniques to Recover Deleted Information from Flash Storage
EAGER:SaTC:应用对抗性机器学习技术从闪存恢复已删除的信息
- 批准号:
2317563 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Data embedding and detection techniques based on new principles using adversarial perturbation in deep learning
基于深度学习中对抗性扰动的新原理的数据嵌入和检测技术
- 批准号:
23K03846 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cross-level Convolutional Transformer and Adversarial Multi-task Learning for Medical Semantic Segmentation
用于医学语义分割的跨级卷积变压器和对抗性多任务学习
- 批准号:
2722537 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
CAREER: Resisting Automated Algorithmic Surveillance with Human-centered Adversarial Machine Learning
职业:通过以人为中心的对抗性机器学习来抵抗自动算法监视
- 批准号:
2144988 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant