CAREER: Understanding Quasicrystalline Superstructures Formed from Pyramidal Nanocrystals
职业:了解由金字塔形纳米晶体形成的准晶超结构
基本信息
- 批准号:1943930
- 负责人:
- 金额:$ 67.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical Summary:Crystalline materials are characterized by a structure with a regular, repeating pattern of atoms, while amorphous materials such as glass are disordered. Quasicrystalline (QC) materials are unusual in that they are ordered but not periodic, making them a fundamentally different category of materials which is neither a crystal nor a glass. The unique structure gives QC materials intriguing thermal, electrical, magnetic, optical and mechanical properties, making them useful for applications such as non-stick and thermally insulating coatings or corrosive-resistant and extremely strong materials for medical devices and surgical instruments. This CAREER award, supported by the Solid State and Materials Chemistry program within the Division of Materials Research, enables study of QC materials self-assembled from pyramid-shaped nano-sized particles (nanocrystals). The project includes detailed characterization of new QC materials’ structures and formation processes and also develops new characterization and growth methods that may be applicable to studying other soft matter assembly systems. The research offers ample fundamental and visual interest, as well as technological relevance, all of which are integrated into the PI’s education and outreach activities. YouTube movies with a jargon-free, storytelling style are created and promoted through various social media platforms. These videos take unique advantage of the connection between the beautiful and eye-catching QC patterns created by this fundamental study and real-world art, decoration and architectural design. Additionally, the project supports outreach to local high school students through an annual STEM Day. Technical Summary:This CAREER project, supported by the Solid State and Materials Chemistry program within the Division of Materials Research, integrates education and research on quasicrystalline (QC) superstructures assembled from pyramid-shaped nanocrystals (NCs). Self-assembly of NCs into novel superstructures is a promising approach for transporting nanoscopic properties into macroscopic materials to eventually enable highly efficient solar cells, low-energy-consumption lighting and displays, and more sensitive biological sensors. To realize these opportunities requires rational control over the formation of NC superstructures. Quasicrystals are ordered but not periodic and as such defy classification as either a crystal or a glass. The study of NC QC superlattices (QC-SLs) is in its infancy compared to efforts on conventional NC crystalline superstructures. It remains an outstanding question how NCs organize into these long-range ordered yet aperiodic lattices; methods to produce and characterize these unique materials are limited. To address these issues, the PI's group first synthesizes anisotropic pyramidal NCs and assembles them into QC superstructures. These materials are then characterized using combinations of in situ and ex situ real space methods (electron microscopies and tomography) complemented by reciprocal space measurements (electron diffraction and X-ray scattering). In addition to 2D superlattices, 3D QC supercrystals grown via microfluidics will be structurally characterized using a new super-crystallography technique. Together, these tools provide exquisite detail concerning the packing of these structures and specify the relative orientation of individual NCs. Such information clarifies how NC synthesis, superstructure formation and transformation work together to create QC superstructures. Results generated in this research are integrated into a series of outreach activities that target younger students and adults alike with compelling, visual stories designed to provoke interest in science and technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述:晶态材料的特征是具有规则的、重复的原子图案,而玻璃等非晶态材料则是无序的。准晶(QC)材料的不同寻常之处在于它们是有序的,但不是周期性的,这使它们成为一种根本不同的材料类别,既不是晶体,也不是玻璃。独特的结构使QC材料具有耐人寻味的热、电、磁、光和机械性能,使其适用于不粘和隔热涂层或医疗器械和外科器械的极强耐腐蚀材料等应用。这项职业奖由材料研究部内的固态和材料化学项目支持,能够研究由金字塔形纳米颗粒(纳米晶体)自组装的质量控制材料。该项目包括对新的QC材料的结构和形成过程的详细表征,并开发了新的表征和生长方法,这些方法可能适用于研究其他软物质组装系统。这项研究提供了充分的基本兴趣和视觉兴趣,以及技术相关性,所有这些都纳入了国际和平协会的教育和外联活动。YouTube上的电影没有术语,讲故事的风格是通过各种社交媒体平台创作和推广的。这些视频利用了这一基础研究创造的美丽而引人注目的QC图案与现实世界的艺术、装饰和建筑设计之间的独特联系。此外,该项目还支持通过一年一度的STEM日向当地高中生提供服务。技术总结:这个职业项目由材料研究部的固态和材料化学项目支持,整合了关于由金字塔状纳米晶体(NC)组装的准晶(QC)超结构的教育和研究。将纳米结构自组装成新型超结构是一种很有前途的方法,可以将纳米特性转移到宏观材料中,最终实现高效太阳能电池、低能耗照明和显示器以及更灵敏的生物传感器。要实现这些机遇,需要对NC上层建筑的形成进行合理的控制。准晶是有序的,但不是周期性的,因此不能归类为晶体或玻璃。与传统的纳米晶体超结构相比,纳米QC超晶格(QC-SLS)的研究处于起步阶段。NCs如何组织成这些长程有序的非周期晶格仍然是一个悬而未决的问题;制备和表征这些独特材料的方法有限。为了解决这些问题,Pi的团队首先合成了各向异性的锥形NC,并将它们组装成QC超结构。然后,使用现场和非现场真实空间方法(电子显微镜和断层摄影术)的组合,辅之以相互空间测量(电子衍射和X射线散射),对这些材料进行表征。除了2D超晶格外,通过微流控生长的3D QC超晶将使用一种新的超结晶学技术进行结构表征。总之,这些工具提供了有关这些结构的包装的精细细节,并指定了各个NC的相对方向。这些信息阐明了NC合成、超结构形成和转变如何共同作用来创建QC超结构。这项研究产生的结果被整合到一系列针对年轻学生和成年人的外展活动中,通过引人入胜的视觉故事来激发人们对科学和技术的兴趣。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Lifetime Blinking in Compact CdSe/CdS Core/Shell Quantum Dots
紧凑型 CdSe/CdS 核/壳量子点的快速寿命闪烁
- DOI:10.1021/acs.jpcc.1c03949
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Sun, Yonglei;Zhu, Hua;Jin, Na;Chen, Ou;Zhao, Jing
- 通讯作者:Zhao, Jing
Bulk Grain-Boundary Materials from Nanocrystals
- DOI:10.1016/j.chempr.2020.12.026
- 发表时间:2021-02
- 期刊:
- 影响因子:23.5
- 作者:Yasutaka Nagaoka;M. Suda;Insun Yoon;N. Chen;Hanjun Yang;Yuzi Liu;B. Anzures;S. Parman;Zhongwu Wan
- 通讯作者:Yasutaka Nagaoka;M. Suda;Insun Yoon;N. Chen;Hanjun Yang;Yuzi Liu;B. Anzures;S. Parman;Zhongwu Wan
Influence of local structures on the energy transfer efficiencies of quantum-dot films
- DOI:10.1103/physrevb.102.035437
- 发表时间:2020-07
- 期刊:
- 影响因子:3.7
- 作者:Lintao Peng;Xuedan Ma;Hua Zhu;Ou Chen;Wei Wang
- 通讯作者:Lintao Peng;Xuedan Ma;Hua Zhu;Ou Chen;Wei Wang
Quasicrystalline materials from non-atom building blocks
- DOI:10.1016/j.matt.2022.09.027
- 发表时间:2023-01
- 期刊:
- 影响因子:18.9
- 作者:Yasutaka Nagaoka;J. Schneider;Hua Zhu;Ou Chen
- 通讯作者:Yasutaka Nagaoka;J. Schneider;Hua Zhu;Ou Chen
Synthesis of Ultrathin Perovskite Nanowires via a Postsynthetic Transformation Reaction of Zero-Dimensional Perovskite Nanocrystals
- DOI:10.1021/acs.cgd.1c00118
- 发表时间:2021-03
- 期刊:
- 影响因子:3.8
- 作者:Hanjun Yang;Tong Cai;Lacie Dube;Katie Hills‐Kimball;Ou Chen
- 通讯作者:Hanjun Yang;Tong Cai;Lacie Dube;Katie Hills‐Kimball;Ou Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ou Chen其他文献
Experimental study on treatment of retinitis pigmentosa by inducing Muller cell reprogramming with Lycii Fructus and Salviae Miltiorrhizae Radix et Rhizoma
- DOI:
10.19540/j.cnki.cjcmm.20240115.707 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:0
- 作者:
Song Houpan;Ou Chen;Peng Qinghua - 通讯作者:
Peng Qinghua
Emergent quantum properties from low-dimensional building blocks and their superlattices
- DOI:
10.1007/s12274-024-6984-8 - 发表时间:
2024-10-21 - 期刊:
- 影响因子:9.000
- 作者:
Ken Seungmin Hong;Ou Chen;Yusong Bai - 通讯作者:
Yusong Bai
A systematic review of parental burnout and related factors among parents
- DOI:
10.1186/s12889-024-17829-y - 发表时间:
2024-02-05 - 期刊:
- 影响因子:3.600
- 作者:
Xiaohe Ren;Yingying Cai;Jingyi Wang;Ou Chen - 通讯作者:
Ou Chen
Experimental and Numerical Investigation on the Dynamic Responses of the Remaining Structure under Impact Loading with Column Being Removed
拆除柱后剩余结构冲击荷载动力响应的试验与数值研究
- DOI:
10.1007/s12205-021-1026-5 - 发表时间:
2021-03 - 期刊:
- 影响因子:2.2
- 作者:
Ou Chen;Liu Jun;Sun Lei;Xiao Zhimin;Cheng Yi;Liu Mingqing;Zhao Futian;Zhen Mengyang;Wang Yue - 通讯作者:
Wang Yue
Plasmonic effect on photon antibunching and blinking behavior of single quantum dots near gold nanoparticles
金纳米粒子附近单量子点的光子反聚束和闪烁行为的等离子体效应
- DOI:
10.1117/12.2075589 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Swayandipta Dey;Yadong Zhou;X. Tian;Julie A. Jenkins;Ou Chen;Shengli Zou;J. Zhao - 通讯作者:
J. Zhao
Ou Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ou Chen', 18)}}的其他基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 67.79万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Integrative Learning of Fluorescence Fluctuations in Perovskite Quantum Dots Using A Data Science Assisted Single-Particle Approach
CAS:协作研究:使用数据科学辅助单粒子方法综合学习钙钛矿量子点荧光涨落
- 批准号:
2203700 - 财政年份:2022
- 资助金额:
$ 67.79万 - 项目类别:
Standard Grant
EAGER: COLLABORATIVE RESEARCH: Hybrid Quantum Dot-Metal Nanocrystals for Photoreduction of CO2: Synthesis, Spectroscopy and Catalysis
渴望:合作研究:用于二氧化碳光还原的混合量子点金属纳米晶体:合成、光谱学和催化
- 批准号:
1936223 - 财政年份:2019
- 资助金额:
$ 67.79万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 67.79万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 67.79万 - 项目类别:
Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
- 批准号:
2881629 - 财政年份:2027
- 资助金额:
$ 67.79万 - 项目类别:
Studentship
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 67.79万 - 项目类别:
Fellowship
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
- 批准号:
EP/Z000246/1 - 财政年份:2025
- 资助金额:
$ 67.79万 - 项目类别:
Research Grant
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
- 批准号:
FT230100021 - 财政年份:2025
- 资助金额:
$ 67.79万 - 项目类别:
ARC Future Fellowships
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
- 批准号:
LE240100091 - 财政年份:2024
- 资助金额:
$ 67.79万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Understanding the implications of pandemic delays for the end of life
了解大流行延迟对生命终结的影响
- 批准号:
DP240101775 - 财政年份:2024
- 资助金额:
$ 67.79万 - 项目类别:
Discovery Projects
Understanding multiday cycles underpinning human physiology
了解支撑人体生理学的多日周期
- 批准号:
DP240102899 - 财政年份:2024
- 资助金额:
$ 67.79万 - 项目类别:
Discovery Projects
Understanding T cell trafficking and function during antigenic interference
了解抗原干扰期间 T 细胞的运输和功能
- 批准号:
DP240101665 - 财政年份:2024
- 资助金额:
$ 67.79万 - 项目类别:
Discovery Projects