Higher Representation Theory and Heegaard Floer Homology
更高表示理论和 Heegaard Floer 同调
基本信息
- 批准号:2101916
- 负责人:
- 金额:$ 15.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2021-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern research at the interface of mathematics and physics has revealed startling connections between geometric properties of shapes, theories in high-energy physics, deep concepts of symmetry, and rapidly developing areas like materials science and quantum computation. A set of constructions known as "Heegaard Floer homology" brings together many of these perspectives and forms a key nexus in this web of ideas. As a result, there is much interest in Heegaard Floer homology as a guiding light for understanding this web more broadly and pushing out toward the applications of most mathematical and practical significance. This project aims to exploit the locality inherent in Heegaard Floer homology to understand a long-sought-after algebraic operation based on principles of higher symmetry, and to use this new structure to advance adjacent fields of research. This project will support the professional development of students and other early-career mathematicians through research collaborations, mentoring activities, and outreach, including organization of conferences and seminars. In more detail, this project builds on recent work which uncovered a relationship between the lower-dimensional or more-local aspects of Heegaard Floer homology and tensor products for higher representations of categorified quantum groups. Such tensor products have long been recognized as a crucial element needed for further progress in this area, but only in certain cases have they been defined. This project will expand our knowledge of the structure of Heegaard Floer homology using higher tensor products as an organizing principle, while also using insights from the extensive Heegaard Floer literature to understand more about higher tensor products in general and to develop new links with areas ranging from geometric representation theory to amplituhedra in physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在数学和物理学的界面上的现代研究揭示了形状的几何性质,高能物理学理论,对称性的深层概念以及材料科学和量子计算等快速发展的领域之间的惊人联系。一套被称为“Heegaard Floer同源性”的结构汇集了许多这些观点,并在这个思想网络中形成了一个关键的联系。因此,人们对Heegaard Floer同源性很感兴趣,因为它是更广泛地理解这个网络的指路明灯,并推动了大多数数学和实际意义的应用。该项目旨在利用Heegaard Floer同源性中固有的局部性来理解基于更高对称性原则的长期追求的代数运算,并使用这种新结构来推进相邻的研究领域。该项目将通过研究合作,指导活动和推广活动,包括组织会议和研讨会,支持学生和其他早期职业数学家的专业发展。更详细地说,这个项目建立在最近的工作,揭示了Heegaard Floer同调的低维或更局部的方面与分类量子群的更高表示的张量积之间的关系。这种张量积长期以来一直被认为是在这一领域取得进一步进展所需的关键要素,但只有在某些情况下才被定义。该项目将使用更高的张量积作为组织原则,扩展我们对Heegaard Floer同调结构的了解,同时也利用广泛的Heegaard Floer文献的见解来了解更多关于更高张量产品的一般知识,并与从几何表示理论到物理学中的振幅面体等领域建立新的联系。该奖项反映了NSF的法定使命,并被认为值得通过以下方式获得支持:使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Manion其他文献
Andrew Manion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Manion', 18)}}的其他基金
Higher Representation Theory and Heegaard Floer Homology
更高表示理论和 Heegaard Floer 同调
- 批准号:
2151786 - 财政年份:2021
- 资助金额:
$ 15.78万 - 项目类别:
Standard Grant
相似海外基金
Higher Representation Theory and Subfactors
更高表示理论和子因素
- 批准号:
2400089 - 财政年份:2024
- 资助金额:
$ 15.78万 - 项目类别:
Standard Grant
Stable homotopy refinements in higher representation theory
更高表示理论中的稳定同伦改进
- 批准号:
567835-2022 - 财政年份:2022
- 资助金额:
$ 15.78万 - 项目类别:
Postdoctoral Fellowships
New Topologically Inspired Directions in Higher Representation Theory
更高表示理论中受拓扑启发的新方向
- 批准号:
2200419 - 财政年份:2022
- 资助金额:
$ 15.78万 - 项目类别:
Continuing Grant
Higher structures and deformations in representation theory
表示论中的高级结构和变形
- 批准号:
503982309 - 财政年份:2022
- 资助金额:
$ 15.78万 - 项目类别:
Research Grants
Higher Depth in Representation Theory, Number Theory, and Quantum Topology
更深入的表示论、数论和量子拓扑
- 批准号:
2101844 - 财政年份:2021
- 资助金额:
$ 15.78万 - 项目类别:
Continuing Grant
Higher Representation Theory and Heegaard Floer Homology
更高表示理论和 Heegaard Floer 同调
- 批准号:
2151786 - 财政年份:2021
- 资助金额:
$ 15.78万 - 项目类别:
Standard Grant
Research of higher order Painleve systems and rigid systems from a viewpoint of representation theory
从表示论的角度研究高阶Painleve系统和刚性系统
- 批准号:
20K03645 - 财政年份:2020
- 资助金额:
$ 15.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homotopical Methods in Higher Representation Theory
高级表示理论中的同伦方法
- 批准号:
1902092 - 财政年份:2019
- 资助金额:
$ 15.78万 - 项目类别:
Standard Grant
CAREER: Higher Enumerative Geometry via Representation Theory and Mathematical Physics
职业:通过表示论和数学物理进行高等枚举几何
- 批准号:
1845034 - 财政年份:2019
- 资助金额:
$ 15.78万 - 项目类别:
Continuing Grant
Higher Representation Theory
更高表征理论
- 批准号:
DE150101415 - 财政年份:2015
- 资助金额:
$ 15.78万 - 项目类别:
Discovery Early Career Researcher Award