Probabilistic Methods in Analysis, Geometry, and Beyond
分析、几何及其他领域的概率方法
基本信息
- 批准号:1954264
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops several research directions combining probability, geometry and analysis, with many problems motivated by physics. The main object of study are random systems with a certain level of degeneracy similar to a constrained movement. Such degenerate diffusions in high or infinite dimensions have many applications in different fields including quantum field theory (QFT), turbulence, chemical dynamics, and large data environments. While they are useful in modelling many of such phenomena, degenerate and high-dimensional nature of the setting pose mathematical challenges. A number of the projects are for graduate and possibly undergraduate students. In addition, the results will be used for mentoring and educational activities at the local middle school and at the undergraduate level.One of the directions of research is to study Cameron-Martin-Girsanov type quasi-invariance in hypoelliptic settings, and its applications to functional inequalities, smoothness of probability laws in subelliptic and singular settings. This is closely related to asymptotic behavior of such diffusions, namely, large deviations, the Onsager–Machlup functional which can be viewed as an analog of the Lagrangian of a dynamical system, and convergence to equilibrium of a large particle system with singular potentials. Both degeneracy (lack of ellipticity) and high dimensions have to be dealt with new techniques coming from different fields such as probability, ergodic theory and sub-Riemannian geometry. While many of these settings arise naturally in applications, their mathematical analysis is not easy. In addition to theoretical significance of such questions, some answers have practical uses. For example, the rate of convergence to the equilibrium, its dependence on the number of particles and other parameters, or an explicit form of the rate function have many applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目发展了几个结合概率、几何和分析的研究方向,有许多问题是由物理驱动的。主要研究对象是具有一定退化程度的随机系统,类似于受约束的运动。这种高维或无限维简并扩散在量子场论、湍流、化学动力学和大数据环境等领域有着广泛的应用。虽然它们在模拟许多这样的现象时很有用,但环境的退化和高维性质构成了数学上的挑战。许多项目是为研究生和可能的本科生准备的。研究方向之一是研究次椭圆环境下的Cameron-Martin-Girsanov型拟不变性及其在次椭圆和奇异环境下的泛函不等式、概率律的光滑性等方面的应用。这与这种扩散的渐近行为密切相关,即大偏差、可视为动力系统拉格朗日模拟的Onsager-Machlup泛函以及具有奇异势的大粒子系统的收敛到平衡。无论是退化(缺乏椭圆性)还是高维,都必须用来自不同领域的新技术来处理,如概率、遍历理论和次黎曼几何。虽然这些设置中的许多都是在应用程序中自然产生的,但它们的数学分析并不容易。除了这些问题的理论意义外,一些答案还具有实际用途。例如,收敛到平衡的速度,它对粒子数量和其他参数的依赖,或速率函数的显式形式有许多应用。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An application of the Gaussian correlation inequality to the small deviations for a Kolmogorov diffusion
高斯相关不等式在柯尔莫哥洛夫扩散小偏差中的应用
- DOI:10.1214/22-ecp459
- 发表时间:2022
- 期刊:
- 影响因子:0.5
- 作者:Carfagnini, Marco
- 通讯作者:Carfagnini, Marco
Small deviations and Chung’s law of iterated logarithm for a hypoelliptic Brownian motion on the Heisenberg group
海森堡群上的亚椭圆布朗运动的小偏差和钟氏迭代对数定律
- DOI:10.1090/btran/102
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Carfagnini, Marco;Gordina, Maria
- 通讯作者:Gordina, Maria
Logarithmic Sobolev inequalities on non-isotropic Heisenberg groups
- DOI:10.1016/j.jfa.2022.109500
- 发表时间:2021-05
- 期刊:
- 影响因子:1.7
- 作者:M. Gordina;Liangbing Luo
- 通讯作者:M. Gordina;Liangbing Luo
Gamma Calculus Beyond Villani and Explicit Convergence Estimates for Langevin Dynamics with Singular Potentials
- DOI:10.1007/s00205-021-01664-1
- 发表时间:2021-06-08
- 期刊:
- 影响因子:2.5
- 作者:Baudoin, Fabrice;Gordina, Maria;Herzog, David P.
- 通讯作者:Herzog, David P.
Dirichlet Sub-Laplacians on Homogeneous Carnot Groups: Spectral Properties, Asymptotics, and Heat Content
齐次卡诺群上的狄利克雷亚拉普拉斯:谱性质、渐近和热含量
- DOI:10.1093/imrn/rnad065
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Carfagnini, Marco;Gordina, Maria
- 通讯作者:Gordina, Maria
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Gordina其他文献
Matrix-valued modified logarithmic Sobolev inequality for sub-Laplacian on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"mi mathvariant="normal"SU/mimspace width="0.2em"/mspacemrowmo stretchy="true"(/momn2/mnmo stretchy="true")/mo/mrow/math
SU 上子拉普拉斯算子的矩阵值修正对数索伯列夫不等式
- DOI:
10.1016/j.jfa.2024.110453 - 发表时间:
2024-07-15 - 期刊:
- 影响因子:1.600
- 作者:
Li Gao;Maria Gordina - 通讯作者:
Maria Gordina
Infinitesimal conformal restriction and unitarizing measures for Virasoro algebra
维拉萨罗代数的无穷小共形限制和幺正化测度
- DOI:
10.1016/j.matpur.2025.103669 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:2.300
- 作者:
Maria Gordina;Wei Qian;Yilin Wang - 通讯作者:
Yilin Wang
Non-commutative $$L^p$$ spaces and Grassmann stochastic analysis
- DOI:
10.1007/s00440-025-01379-4 - 发表时间:
2025-05-25 - 期刊:
- 影响因子:1.600
- 作者:
Francesco De Vecchi;Luca Fresta;Maria Gordina;Massimiliano Gubinelli - 通讯作者:
Massimiliano Gubinelli
Maria Gordina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Gordina', 18)}}的其他基金
Asymptotics and ergodicity of hypoelliptic random processes
亚椭圆随机过程的渐近性和遍历性
- 批准号:
2246549 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Probabilistic Methods in Geometry and Analysis
几何与分析中的概率方法
- 批准号:
1712427 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Stochastic analysis and related topics
随机分析和相关主题
- 批准号:
1405169 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Infinite-dimensional stochastic analysis
无限维随机分析
- 批准号:
0706784 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Stochastic analysis in infinite dimensions
无限维随机分析
- 批准号:
0306468 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Function Spaces and Stochastic Differential Equations on Infinite Dimensional Groups
无限维群上的函数空间和随机微分方程
- 批准号:
0071595 - 财政年份:2000
- 资助金额:
$ 33万 - 项目类别:
Fellowship Award
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
- 批准号:
2246484 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Probabilistic Methods in Geometry and Analysis
几何与分析中的概率方法
- 批准号:
1712427 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Analysis of probabilistic systems by relational and algebraic methods
通过关系和代数方法分析概率系统
- 批准号:
16K21557 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
1111319 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0918623 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Geometric Methods in the Probabilistic Analysis of Condition Numbers
条件数概率分析中的几何方法
- 批准号:
76347084 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Research Fellowships
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅立叶分析和概率方法
- 批准号:
0652672 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652571 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652684 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅立叶分析和概率方法
- 批准号:
0808908 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Standard Grant