Infinite-dimensional stochastic analysis
无限维随机分析
基本信息
- 批准号:0706784
- 负责人:
- 金额:$ 21.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to the study of stochastic analysis ininfinite dimensions. The main topic is stochastic differentialequations (SDEs) in infinite-dimensional spaces, such asinfinite-dimensional groups, loop groups and path spaces,non-commutative $L^p$-spaces. The questions of existence anduniqueness of solutions of the SDEs and smoothness of solutions willbe studied. These solutions will be used to construct and study heatkernel measures (a non-commutative analogue of Gaussian or Wienermeasure) on infinite-dimensional manifolds such as aninfinite-dimensional Heisenberg group and the Virasoro group. Ingeneral these infinite-dimensional spaces do not have an analogue ofthe Lebesgue measure or a Haar measure in the group case. The PIintends to study Cameron-Martin type quasi-invariance of thesemeasures. It is an interesting question in itself, and in addition itcan give rise to unitary representations of the infinite-dimensionalgroups. It is proposed to study properties of square-integrableholomorphic functions, including non-linear analogues of theSegal-Bargmann transform and bosonic Fock space representations.The intellectual merit of this proposal is in providing a betterunderstanding of Gaussian-type measures on infinite-dimensionalcurved spaces. In particular, the proposed research will connectdiverse fields: stochastic analysis, geometric analysis andmathematical physics. This research project has broader impacts ondiverse areas of mathematics, and it involves activities which helpto disseminate the knowledge of new findings in the field. Theproposed research is motivated by several subjects.Infinite-dimensional spaces such as loop groups and path spacesappear in physics, for example, in quantum field theory and stringtheory. The PI proposes to formalize and study some of the notionsused in physics, such as measures on certain infinite-dimensionalspaces. In addition, it has a significant educational component,namely, it involves two graduate students of the PI.
本课题致力于无限大维随机分析的研究。主要研究无穷维空间中的随机微分方程,如无穷维群、环路群、路径空间、非交换L^p -空间等。研究了该方程解的存在唯一性和解的光滑性问题。这些解将用于在无限维流形(如无限维Heisenberg群和Virasoro群)上构建和研究热核测度(高斯测度或Wienermeasure的非交换模拟)。一般来说,这些无限维空间在群情况下没有类似的勒贝格测度或哈尔测度。本文拟研究这些测度的Cameron-Martin型拟不变性。这本身就是一个有趣的问题,此外,它可以引起无限维群的幺正表示。提出研究平方可积全纯函数的性质,包括非线性的segal - bargmann变换和玻色子Fock空间表示。这一建议的智力价值在于提供了对无限维弯曲空间上的高斯测度的更好理解。特别是,拟议的研究将连接多个领域:随机分析,几何分析和数学物理。这个研究项目对数学的各个领域有更广泛的影响,它涉及的活动有助于传播该领域新发现的知识。提出的研究是由几个主题驱动的。无限维空间,如环路群和路径空间,出现在物理学中,例如量子场论和弦理论。PI建议形式化和研究物理学中使用的一些概念,例如在某些无限维空间上的度量。此外,它有一个显著的教育成分,即,它涉及两名研究生的PI。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Gordina其他文献
Matrix-valued modified logarithmic Sobolev inequality for sub-Laplacian on math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"mi mathvariant="normal"SU/mimspace width="0.2em"/mspacemrowmo stretchy="true"(/momn2/mnmo stretchy="true")/mo/mrow/math
SU 上子拉普拉斯算子的矩阵值修正对数索伯列夫不等式
- DOI:
10.1016/j.jfa.2024.110453 - 发表时间:
2024-07-15 - 期刊:
- 影响因子:1.600
- 作者:
Li Gao;Maria Gordina - 通讯作者:
Maria Gordina
Infinitesimal conformal restriction and unitarizing measures for Virasoro algebra
维拉萨罗代数的无穷小共形限制和幺正化测度
- DOI:
10.1016/j.matpur.2025.103669 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:2.300
- 作者:
Maria Gordina;Wei Qian;Yilin Wang - 通讯作者:
Yilin Wang
Non-commutative $$L^p$$ spaces and Grassmann stochastic analysis
- DOI:
10.1007/s00440-025-01379-4 - 发表时间:
2025-05-25 - 期刊:
- 影响因子:1.600
- 作者:
Francesco De Vecchi;Luca Fresta;Maria Gordina;Massimiliano Gubinelli - 通讯作者:
Massimiliano Gubinelli
Maria Gordina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Gordina', 18)}}的其他基金
Asymptotics and ergodicity of hypoelliptic random processes
亚椭圆随机过程的渐近性和遍历性
- 批准号:
2246549 - 财政年份:2023
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
Probabilistic Methods in Analysis, Geometry, and Beyond
分析、几何及其他领域的概率方法
- 批准号:
1954264 - 财政年份:2020
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
Probabilistic Methods in Geometry and Analysis
几何与分析中的概率方法
- 批准号:
1712427 - 财政年份:2017
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
Stochastic analysis and related topics
随机分析和相关主题
- 批准号:
1405169 - 财政年份:2014
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
Stochastic Analysis and Related Topics
随机分析及相关主题
- 批准号:
1007496 - 财政年份:2010
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
Stochastic analysis in infinite dimensions
无限维随机分析
- 批准号:
0306468 - 财政年份:2003
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
Function Spaces and Stochastic Differential Equations on Infinite Dimensional Groups
无限维群上的函数空间和随机微分方程
- 批准号:
0071595 - 财政年份:2000
- 资助金额:
$ 21.99万 - 项目类别:
Fellowship Award
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
- 批准号:
23H03354 - 财政年份:2023
- 资助金额:
$ 21.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Infinite-dimensional stochastic systems: stable stochastic partial differential equations, spatial branching models and population genetics, and diffusions on real trees
无限维随机系统:稳定随机偏微分方程、空间分支模型和群体遗传学以及真实树上的扩散
- 批准号:
545729-2020 - 财政年份:2021
- 资助金额:
$ 21.99万 - 项目类别:
Postdoctoral Fellowships
Infinite-dimensional stochastic systems: stable stochastic partial differential equations, spatial branching models and population genetics, and diffusions on real trees
无限维随机系统:稳定随机偏微分方程、空间分支模型和群体遗传学以及真实树上的扩散
- 批准号:
545729-2020 - 财政年份:2020
- 资助金额:
$ 21.99万 - 项目类别:
Postdoctoral Fellowships
Stochastic Analysis on Infinite Dimensional Spaces from a Geometric View
从几何角度看无限维空间的随机分析
- 批准号:
20K03639 - 财政年份:2020
- 资助金额:
$ 21.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiscale Analysis of Infinite-Dimensional Stochastic Systems
无限维随机系统的多尺度分析
- 批准号:
1954299 - 财政年份:2020
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
New developments in infinite dimensional stochastic analysis based on constructions of spaces of generalized functionals and applications to quantum information theory
基于广义泛函空间构造的无限维随机分析新进展及其在量子信息论中的应用
- 批准号:
19K03592 - 财政年份:2019
- 资助金额:
$ 21.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the no-arbitrage condition and completeness of market models based on infinite dimensional stochastic analysis
基于无限维随机分析的市场模型无套利条件和完备性研究
- 批准号:
18J20973 - 财政年份:2018
- 资助金额:
$ 21.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Research on differential operators on infinite dimensional spaces via stochastic analysis
基于随机分析的无限维空间微分算子研究
- 批准号:
17K05300 - 财政年份:2017
- 资助金额:
$ 21.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite dimensional analysis by stochastic methods and their application to quantum field theory
随机方法的无限维分析及其在量子场论中的应用
- 批准号:
16H03942 - 财政年份:2016
- 资助金额:
$ 21.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stochastic Dynamics: Finite and Infinite Dimensional
随机动力学:有限维和无限维
- 批准号:
1463964 - 财政年份:2015
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant














{{item.name}}会员




