Wabash Modern Analysis Seminar and Mini-Conference
Wabash 现代分析研讨会和小型会议
基本信息
- 批准号:2000168
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the 2020 - 2022 meetings of the Wabash Seminar and Mini-Conference series, which consists of seminars held at Wabash College in Crawfordsville, Indiana, and an annual weekend mini-conference held in the fall on the Indiana University – Purdue University Indianapolis (IUPUI) campus. The tentative dates of the next annual mini-conference are September 19-20, 2020. The main goal of Wabash Seminar and Mini-Conference series is to bring together the community of researchers working in modern analysis in the Midwest region, along with established researchers from farther afield, in order to stimulate fruitful interactions and encourage collaboration among researchers working in different areas of modern mathematical analysis. Over the years, the seminar and mini-conference have attracted numerous faculty members, postdoctoral researchers, and graduate students from Indiana University, IUPUI, Purdue University, University of Illinois, University of Cincinnati, Vanderbilt University, and Washington University in St. Louis, among other regional institutions. The Wabash Seminar series offers an excellent opportunity for junior researchers to be exposed to, and informed about, the latest major mathematical developments in the field. Additionally, the series provides an invaluable opportunity to promote research in the Midwest region, helping junior faculty, postdocs, and graduate students in the region to gain exposure within, network with, and disseminate their research to the broader mathematical community. The Wabash Seminar and Mini-Conference series also serves to promote and mentor talented undergraduate students, preparing them for graduate school and research careers in mathematics.The Wabash Seminar and the Mini-Conference series is jointly organized by researchers from four mathematics departments: Indiana University, IUPUI, Purdue University, and the University of Illinois at Urbana-Champaign. The research groups from these universities have complementary expertise that spans many of the major directions of research in operator algebras and operator theory: free probability, von Neumann algebras, non-commutative and coarse geometry, C*-algebras and their topological invariants, operator spaces, and non-commutative harmonic analysis as well as connections to quantum information theory, ergodic theory and dynamical systems, and number theory. The regular seminars at Wabash College are scheduled on Saturday afternoons. Two one-hour speakers are invited for each seminar with ample time for discussions among the participants. The Mini-Conference is held over a weekend, from Saturday morning to early afternoon Sunday. Seven plenary speakers are invited to give 50-minute talks, and 30-minute invited and contributed talks are given by postdocs, graduate students, undergraduate students, and visitors.The website for the Wabash Seminar and Mini-Conference series is: https://www.math.purdue.edu/~tsincla/wabash/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加2020 - 2022年沃巴什研讨会和迷你会议系列会议,其中包括在印第安纳州克劳福德维尔沃巴什学院举行的研讨会,以及在印第安纳大学-普渡大学印第安纳波利斯(IUPUI)校园举行的年度周末迷你会议。下一届年度小型会议的暂定日期为2020年9月19日至20日。沃巴什研讨会和迷你会议系列的主要目标是将中西部地区从事现代分析的研究人员以及来自更远地区的知名研究人员聚集在一起,以刺激富有成效的互动,鼓励从事现代数学分析不同领域的研究人员之间的合作。多年来,研讨会和小型会议吸引了来自印第安纳大学,IUPUI,普渡大学,伊利诺伊大学,辛辛那提大学,范德比尔特大学和圣路易斯华盛顿大学等地区机构的众多教职员工,博士后研究人员和研究生。沃巴什研讨会系列为初级研究人员提供了接触和了解该领域最新主要数学发展的绝佳机会。此外,该系列提供了一个宝贵的机会,以促进研究在中西部地区,帮助初级教师,博士后和研究生在该地区获得曝光,网络,并传播他们的研究更广泛的数学社区。沃巴什研讨会和迷你会议系列也有助于促进和指导有才华的本科生,为他们在数学研究生院和研究事业做好准备。沃巴什研讨会和迷你会议系列是由四个数学系的研究人员联合组织的:印第安纳大学、IUPUI、普渡大学和伊利诺伊大学厄巴纳-香槟分校。来自这些大学的研究小组具有互补的专业知识,涵盖了算子代数和算子理论的许多主要研究方向:自由概率、冯·诺伊曼代数、非交换和粗糙几何、C*代数及其拓扑不变量、算子空间、非交换调和分析以及与量子信息论、遍历理论和动力系统以及数论的联系。沃巴什学院的定期研讨会安排在星期六下午。每次研讨会邀请两名一小时的演讲者,与会者有充足的时间进行讨论。小型会议在周末举行,从周六上午到周日下午早些时候。邀请了7位全体演讲人进行50分钟的演讲,并邀请博士后、研究生、本科生和参观者进行30分钟的演讲。沃巴什研讨会和小型会议系列的网站是:https://www.math.purdue.edu/~tsincla/wabash/.This该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Sinclair其他文献
W*-rigidity for the von Neumann algebras of products of hyperbolic groups
双曲群乘积的冯诺依曼代数的 W*-刚性
- DOI:
10.1007/s00039-016-0361-z - 发表时间:
2016 - 期刊:
- 影响因子:2.2
- 作者:
I. Chifan;Rolando de Santiago;Thomas Sinclair - 通讯作者:
Thomas Sinclair
Maximal Rigid Subalgebras of Deformations and $L^2$ Cohomology, II
变形的最大刚性子代数和 $L^2$ 上同调,II
- DOI:
10.14288/1.0389705 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rolando de Santiago;Ben Hayes;D. Hoff;Thomas Sinclair - 通讯作者:
Thomas Sinclair
Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review
- DOI:
10.1007/s13593-019-0570-6 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:6.700
- 作者:
Gilles Lemaire;Thomas Sinclair;Victor Sadras;Gilles Bélanger - 通讯作者:
Gilles Bélanger
Model Theory of Operator Systems and C$^*$-Algebras
算子系统和C$^*$-代数的模型理论
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Thomas Sinclair - 通讯作者:
Thomas Sinclair
The Theory of Tracial Von Neumann Algebras Does Not Have A Model Companion
追踪冯·诺依曼代数理论没有模型伴侣
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Isaac Goldbring;B. Hart;Thomas Sinclair - 通讯作者:
Thomas Sinclair
Thomas Sinclair的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Sinclair', 18)}}的其他基金
Quantifying Rigidity in von Neumann Algebras
量化冯·诺依曼代数中的刚性
- 批准号:
2055155 - 财政年份:2021
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Von Neumann Algebras: Rigidity, Applications to Measurable Dynamics, and Model Theory
冯诺依曼代数:刚性、可测量动力学的应用和模型理论
- 批准号:
1600857 - 财政年份:2016
- 资助金额:
$ 3.3万 - 项目类别:
Continuing Grant
相似海外基金
Comparison between the behaviors of modern human and Neanderthals from the perspective of lithic raw material utilization: quantitative analysis of chert lithics in southern Jordan
从石器原料利用角度比较现代人和尼安德特人的行为:约旦南部燧石石器的定量分析
- 批准号:
22KJ1518 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Conference: Harmonic and Complex Analysis: Modern and Classical
会议:调和与复分析:现代与古典
- 批准号:
2308417 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Unravelling the formation of unique modern stromatolites by taxonomic and functional analysis: implications for the early evolution of life
通过分类学和功能分析揭示独特的现代叠层石的形成:对生命早期进化的影响
- 批准号:
EP/X024873/1 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Fellowship
A Historical Analysis of the Formation of Social Stratification in the Structure of the Ruling Class in Modern and Contemporary Japan: Focusing on Succession and Reproduction
日本近现代统治阶级结构社会分层形成的历史分析——以继承与再生产为中心
- 批准号:
23H00883 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Synergies between Nonparametrics, Sequential Analysis and Modern Data Science
会议:非参数学、序列分析和现代数据科学之间的协同作用
- 批准号:
2327589 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Collaborative Research: Modern Meta-Analysis Research Institute
合作研究:现代荟萃分析研究所
- 批准号:
2321032 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Collaborative Research: Modern Meta-Analysis Research Institute
合作研究:现代荟萃分析研究所
- 批准号:
2321031 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Making Use of the Curse of Dimensionality in Modern Data Analysis
在现代数据分析中利用维度诅咒
- 批准号:
2311399 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Advancing the design, analysis, and interpretation of acute respiratory distress syndrome trials using modern statistical tools
使用现代统计工具推进急性呼吸窘迫综合征试验的设计、分析和解释
- 批准号:
10633978 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Modern Techniques in Design and Analysis of Bayesian Adaptive Clinical Trials
贝叶斯适应性临床试验设计和分析的现代技术
- 批准号:
RGPIN-2020-04115 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Discovery Grants Program - Individual