Conference: Harmonic and Complex Analysis: Modern and Classical

会议:调和与复分析:现代与古典

基本信息

  • 批准号:
    2308417
  • 负责人:
  • 金额:
    $ 4.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

This award supports U.S. participation in the conference “Harmonic and Complex Analysis: Modern and Classical” to be held June 18-22, 2023 at Bar Ilan University, Israel. The conference is jointly organized by researchers from Bar-Ilan University, Holon Institute of Technology, ORT Braude College, Tel Aviv University, and the University of South Florida. Presentations at the conference range from plenary lectures describing recent breakthrough results in complex and harmonic analysis in a form accessible to advanced graduate students and young researchers, to more specialized talks on focused research topics. The award supports the travel of early-career researchers and graduate students from U.S. institutions. Participation of beginning researchers in this international conference will benefit the U.S. research community by fostering new collaborations and the exchange of research ideas between U.S.-based researchers working in harmonic and complex analysis and their counterparts across the globe.The conference focuses on a suite of currently emerging themes at the borderline between mathematics and physics. Areas of research of the plenary speakers include (1) localization of eigenmodes of elliptic operators, which unites deep results in geometric measure theory and harmonic analysis with modern applications to quantum physics, noise abatement walls, LEDs, and optical devices; (2) harmonic analysis with applications to medical imaging; (3) stochastic algebraic geometry and gravitational lensing; (4) classical harmonic analysis with applications to probability theory; and (5) classical complex analysis and function theory, with new lines of attack on well-known problems in mathematical physics, such as Hele-Shaw flows, Laplacian growth, and the study of Coulomb gases. Further information can be found at https://hca2023.math.biu.ac.il .This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持美国参加将于2023年6月18日至22日在以色列巴伊兰大学举行的“谐波与复分析:现代与古典”会议。这次会议是由巴伊兰大学、霍隆理工学院、ORT Braude学院、特拉维夫大学和南佛罗里达大学的研究人员联合组织的。在会议上的演讲范围从全会讲座描述复杂和谐波分析的形式访问先进的研究生和年轻的研究人员,以更专门的谈话重点研究课题的最新突破性成果。该奖项支持来自美国机构的早期职业研究人员和研究生的旅行。参加这次国际会议的初级研究人员将有利于美国研究界通过促进新的合作和美国之间的研究思想交流。从事谐波和复分析的研究人员以及全球各地的同行。该会议重点关注数学和物理学边缘的一系列当前新兴主题。地球仪。全体演讲者的研究领域包括:(1)椭圆算子本征模的局部化,它将几何测量理论和谐波分析的深入结果与量子物理学、降噪墙、LED和光学设备的现代应用结合起来;(2)谐波分析与医学成像的应用;(3)随机代数几何和引力透镜;(4)经典调和分析与概率论的应用;(5)经典复分析与函数论,对数学物理中的著名问题,如Hele-Shaw流、Laplacian增长和库仑气体的研究,提出了新的解决方案。https://hca2023.math.biu.ac.il该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catherine Beneteau其他文献

Catherine Beneteau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Catherine Beneteau', 18)}}的其他基金

Israel Conference on Complex Analysis and Dynamical Systems VII
以色列复杂分析和动力系统会议 VII
  • 批准号:
    1464939
  • 财政年份:
    2015
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Collaborative Research: POGIL Math - Guided Inquiry Materials for Gatekeeper Courses in Mathematics
协作研究:POGIL Math - 数学把关人课程的指导探究材料
  • 批准号:
    1122757
  • 财政年份:
    2011
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
25th Southeastern Analysis Meeting; Spring 2009; Tampa, FL
第25届东南分析会议;
  • 批准号:
    0849032
  • 财政年份:
    2009
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Collaborative Research: A Phase II Expansion of the Development of a Multidisciplinary Course on Wavelets and Applications
合作研究:小波及其应用多学科课程开发的第二阶段扩展
  • 批准号:
    0717158
  • 财政年份:
    2007
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2022
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Discovery Grants Program - Individual
Problems in complex and harmonic analysis related to weighted norm inequalities
与加权范数不等式相关的复数和调和分析问题
  • 批准号:
    RGPIN-2021-03545
  • 财政年份:
    2021
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Discovery Grants Program - Individual
Transformation dynamics of spatio-temporal coherence of high-harmonic generation in terms of complex spectral analysis
复谱分析中高次谐波时空相干性的变换动力学
  • 批准号:
    18K03496
  • 财政年份:
    2018
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Harmonic Analysis, Complex Analysis, Spectral Theory and All That
会议:调和分析、复分析、谱理论等等
  • 批准号:
    1600705
  • 财政年份:
    2016
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Perspectives in Harmonic Analysis, Geometric Measure Theory, and Partial Differential Equations, and Their Applications to Several Complex Variables
调和分析、几何测度理论和偏微分方程的观点及其在多个复变量中的应用
  • 批准号:
    1201478
  • 财政年份:
    2012
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Complex and Harmonic Analysis in Spectral Theory; Cyclic and Subcyclic vectors of Rank One Perturbations and Anderson-type Hamiltonians
谱理论中的复数和调和分析;
  • 批准号:
    1261687
  • 财政年份:
    2012
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Complex and Harmonic Analysis in Spectral Theory; Cyclic and Subcyclic vectors of Rank One Perturbations and Anderson-type Hamiltonians
谱理论中的复数和调和分析;
  • 批准号:
    1101477
  • 财政年份:
    2011
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Geometric and Combinatorial Viewpoints in Complex and Harmonic Analysis
复数和调和分析中的几何和组合观点
  • 批准号:
    0901524
  • 财政年份:
    2009
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Harmonic Analysis, Partial Differential Equations, and Complex Analysis
调和分析、偏微分方程和复分析
  • 批准号:
    0901569
  • 财政年份:
    2009
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
Topics in Complex and Harmonic Analysis
复数和调和分析主题
  • 批准号:
    0400698
  • 财政年份:
    2004
  • 资助金额:
    $ 4.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了