Understanding Why Cells Choose to Migrate Towards the Cathode: Directing Cell Motility Using Electric Fields

了解细胞为何选择向阴极迁移:利用电场引导细胞运动

基本信息

项目摘要

PI: Gagnon, Zachary RProposal #: 1605553How a cell senses, responds, and moves towards or away from an external cue is central to many biological and medical phenomena including embryogenesis, morphogenesis, immune response, wound healing and cancer metastasis. Electrotaxis, the phenomenon by which cells bias their motion directionally in response to an externally applied electrical field, is important in a number of cellular processes; however, the underlying physical mechanism of how electric fields influence cytoskeletal organization within the cell is unknown. The overall goal of the planned research is to determine the physical mechanisms responsible for initiating electrotaxis in cells. The goal will be achieved by observing electrotactic migration and quantifying the ion activity surrounding electrotaxing cells using precise microfluidic cell confinement chambers. Intellectual merit is based on the innovative strategy and fundamental significance in determining the physical entry point where electric fields are converted into a downstream chemical signal during cellular electrotaxis. Unlike traditional electrotaxis work that focuses on downstream signaling proteins, this project focuses on understanding the immediate influences of the electric field at the cell membrane. Educational impact is achieved through providing new courses and laboratory training for undergraduate and graduate students, outreach to high school students through the institutions "Engineering Innovation" program, engaging 6th - 8th grade students through the "Science Academy Technology" program in Baltimore and Charles City Middle Schools and broadening the participation of underrepresented groups in the proposed research projects through hands-on research and community outreach.How a cell senses, responds, and moves towards or away from an external cue is central to many biological and medical phenomena including embryogenesis, morphogenesis, immune response, wound healing and cancer metastasis. Many eukaryotic cells have internal compasses that allow them to sense these cues, often in the form of gradients of chemoattractant, voltage, or mechanical stress, and bias their motion in a specific direction. Electrotaxis, the phenomenon by which cells bias their motion directionally in response to an externally applied electrical field, is important in a number of cellular processes; however, the underlying physical mechanism of how electric fields are transduced into the cell to influence cytoskeletal organization is unknown. The overall goal of this proposal is to determine the relevant physical mechanisms responsible for initiating electrotaxis in cells. The goal will be achieved by observing electrotactic migration and quantifying the ion activity surrounding electrotaxing cells using precise microfluidic cell confinement chambers. The specific objectives are: 1) to develop and build microfluidic confinement geometries for cell membrane level analysis of electrokinetic ion flux during electrotaxis, 2) to quantify the electric field-induced membrane processes including ion-flow and ion channel activity during electrotaxis, and 3) to understand how downstream cell signaling is activated and transduced by these upstream electric field-induced events. The intellectual merit of the planned research is based on the innovative strategy and fundamental significance in determining the physical entry point where electric fields are transduced into a downstream chemical signal during cellular electrotaxis. Unlike traditional electrotaxis work that focuses on downstream signaling proteins, this project focuses on understanding the immediate influences of the electric field at the cell membrane. Educational impact is achieved through providing new courses and laboratory training for undergraduate and graduate students, outreach to high school students through the institutions "Engineering Innovation" program, engaging 6th - 8th grade students through the "Science Academy Technology" program in Baltimore and Charles City Middle Schools and broadening the participation of underrepresented groups in the proposed research projects through hands-on research and community outreach.
主要研究者:Gagnon,Zachary R Proposal #:1605553细胞如何感知、响应和朝向或远离外部线索移动是许多生物学和医学现象的核心,包括胚胎发生、形态发生、免疫反应、伤口愈合和癌症转移。趋电性是细胞响应于外部施加的电场而定向偏置其运动的现象,在许多细胞过程中很重要;然而,电场如何影响细胞内细胞骨架组织的潜在物理机制尚不清楚。计划研究的总体目标是确定负责启动细胞趋电性的物理机制。这一目标将通过使用精确的微流体细胞限制室观察趋电迁移和量化电刺激细胞周围的离子活性来实现。智力的优点是基于创新的战略和基本意义,在确定的物理入口点,电场转化为下游的化学信号在细胞趋电性。与传统的侧重于下游信号蛋白的趋电性工作不同,该项目侧重于了解电场对细胞膜的直接影响。 通过为本科生和研究生提供新课程和实验室培训,通过机构的“工程创新”计划向高中生推广,通过巴尔的摩和查尔斯市中学的“科学技术学院”项目吸引6 - 8年级学生,并通过双手扩大代表性不足的群体参与拟议的研究项目-研究和社区外展。细胞如何感知、响应以及走向或远离外部线索对于许多生物和医学现象(包括胚胎发生、形态发生、免疫反应、伤口愈合和癌症转移)至关重要。许多真核细胞具有内部罗盘,使它们能够感知这些线索,通常以化学引诱物,电压或机械应力的梯度形式存在,并将它们的运动偏向特定方向。趋电性是细胞响应于外部施加的电场而定向偏置其运动的现象,在许多细胞过程中很重要;然而,电场如何被转导到细胞中以影响细胞骨架组织的潜在物理机制尚不清楚。该提案的总体目标是确定负责启动细胞趋电性的相关物理机制。这一目标将通过使用精确的微流体细胞限制室观察趋电迁移和量化电刺激细胞周围的离子活性来实现。具体目标是:1)开发和构建微流体限制几何结构,用于在趋电性期间电动离子通量的细胞膜水平分析,2)量化电场诱导的膜过程,包括在趋电性期间的离子流和离子通道活性,以及3)理解下游细胞信号传导如何被这些上游电场诱导的事件激活和转导。计划中的研究的智力价值是基于创新的战略和基本意义,在确定的物理入口点,电场被转换成下游的化学信号在细胞趋电性。与传统的侧重于下游信号蛋白的趋电性工作不同,该项目侧重于了解电场对细胞膜的直接影响。 通过为本科生和研究生提供新课程和实验室培训,通过机构的“工程创新”计划向高中生推广,通过巴尔的摩和查尔斯市中学的“科学技术学院”项目吸引6 - 8年级学生,并通过双手扩大代表性不足的群体参与拟议的研究项目-在研究和社区外展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zachary Gagnon其他文献

Multiscale modeling of catalyst deactivation in dry methane reforming
  • DOI:
    10.1016/j.cej.2024.155846
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Satchit Nagpal;Chi Ho Lee;Niranjan Sitapure;Youngjo Kim;Zachary Gagnon;Joseph Sang-II Kwon
  • 通讯作者:
    Joseph Sang-II Kwon
Microfluidic Pressure in Paper (µPiP)
纸中微流体压力 (µPiP)
  • DOI:
    10.31224/osf.io/w829r
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Md. Nazibul Islam;Zachary Gagnon
  • 通讯作者:
    Zachary Gagnon

Zachary Gagnon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zachary Gagnon', 18)}}的其他基金

I-Corps: Scalable Microfluidic Manufacturing Using Microfluidic Pressure in Paper (uPiP) Fabrication
I-Corps:利用纸中微流体压力 (uPiP) 制造可扩展的微流体制造
  • 批准号:
    2112224
  • 财政年份:
    2021
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Standard Grant
Understanding Why Cells Choose to Migrate Towards the Cathode: Directing Cell Motility Using Electric Fields
了解细胞为何选择向阴极迁移:利用电场引导细胞运动
  • 批准号:
    1605553
  • 财政年份:
    2016
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Standard Grant
UNS: Non-Optical Detection of Biomolecular Binding Events at Electrical Liquid Interfaces
UNS:电液界面生物分子结合事件的非光学检测
  • 批准号:
    1511185
  • 财政年份:
    2015
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Standard Grant
CAREER: Biomolecular Detection at Polarized Luquid-Liquid Interfaces
职业:偏振液-液界面的生物分子检测
  • 批准号:
    1351253
  • 财政年份:
    2014
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Why1-PAL转录调控模块的刺葡萄细胞白藜芦醇定向富集
  • 批准号:
    32302284
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding autoimmunity: Why do B cells sometimes attack our tissues instead of protecting us from infections?
了解自身免疫:为什么 B 细胞有时会攻击我们的组织而不是保护我们免受感染?
  • 批准号:
    2889164
  • 财政年份:
    2023
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Studentship
Why can microorganisms withstand drying? Elucidation of drying adaptation mechanism by glass transition of microbial cells
为什么微生物能经受干燥?
  • 批准号:
    21H04710
  • 财政年份:
    2021
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
How and why cells decorate their genetic messages
细胞如何以及为何修饰其遗传信息
  • 批准号:
    DP210102385
  • 财政年份:
    2021
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Discovery Projects
Why cancer cells metastasize to lymphatics from the early stage ?
为什么癌细胞早期就会转移到淋巴管?
  • 批准号:
    19K07676
  • 财政年份:
    2019
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sounding the all clear: investigating how and why plant cells deplete the stress hormone ABA
听起来一切都清楚了:研究植物细胞如何以及为何消耗应激激素 ABA
  • 批准号:
    BB/P018572/1
  • 财政年份:
    2017
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Research Grant
Why do cells gorge themselves (Understanding the molecular mechanisms of chaperone mediated autophagy).
为什么细胞会自我吞噬(了解分子伴侣介导的自噬的分子机制)。
  • 批准号:
    1792461
  • 财政年份:
    2016
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Studentship
Understanding Why Cells Choose to Migrate Towards the Cathode: Directing Cell Motility Using Electric Fields
了解细胞为何选择向阴极迁移:利用电场引导细胞运动
  • 批准号:
    1605553
  • 财政年份:
    2016
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Standard Grant
The chemistry and physics of cellular shutdown: unraveling how and why cells enter into a hypometabolic state
细胞关闭的化学和物理学:揭示细胞如何以及为何进入低代谢状态
  • 批准号:
    268449510
  • 财政年份:
    2015
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Research Grants
An attempt to answer the cardinal question --- why do cancer cells have such a sweet tooth? --- through glioma stem cell research
试图回答这个基本问题——为什么癌细胞如此爱吃甜食?
  • 批准号:
    15K15522
  • 财政年份:
    2015
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Why and how terminally differentiated cells are kept quiescent
终末分化细胞为何以及如何保持静止
  • 批准号:
    15K18564
  • 财政年份:
    2015
  • 资助金额:
    $ 11.07万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了