Derived Categories, Noncommutative Orders, and Other Topics

派生范畴、非交换顺序和其他主题

基本信息

  • 批准号:
    2001224
  • 负责人:
  • 金额:
    $ 23.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research is in the field of algebraic geometry with some connections to string theory. Algebraic geometry is a branch of mathematics studying geometric objects defined by polynomial equations and related mathematical structures. Classically one associates with such geometric objects (called algebraic varieties) the set of algebraic functions on them which forms a commutative ring (i.e., functions can be added and multiplied). Modern research involves more sophisticated algebraic structures associated with algebraic varieties, such as the category of coherent sheaves (the notion of a category is a generalization of that of an associative ring). One part of the project is to establish some cases of the homological mirror symmetry conjecture which identifies categories appearing in geometry in two seemingly unrelated contexts. Another part of the project aims to give a rigorous mathematical foundation to some aspects of the use of super Riemann surfaces (a generalization of the usual surfaces) in string theory. This project provides research training opportunities for undergraduate and graduate students.More specifically, the first part of the project is on homological mirror symmetry for symmetric powers of punctured spheres. The goal is to identify categorical resolutions of derived categories of coherent sheaves on certain algebraic varieties with partially wrapped Fukaya categories of the symmetric powers of punctured spheres. This may help to find a new construction of Ozsvath-Szabo's categorical knot invariant. The second part is to work out a generalization of the Hirzebruch-Riemann-Roch formula to the categories of matrix factorizations over non-affine varieties and stacks. The PI also would like to use categories of matrix factorizations to find a Landau-Ginzburg counterpart of the G-equivariant Gromov-Witten theory. The third part of the project is to realize trigonometric solutions of the associative Yang-Baxter equation in terms of noncommutative orders over nodal cubics. The fourth part is related to the geometry of stable supercurves. The PI proposes to understand the poles of the analog of Mumford's isomorphism for the Berezinian of the moduli of supercurves near the boundary of the compactification by stable supercurves and to study some problems arising in integration over the moduli space of supercurves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议的研究属于代数几何领域,与弦理论有一些联系。代数几何是数学的一个分支,研究由多项式方程和相关数学结构定义的几何对象。经典地,人们将这样的几何对象(称为代数簇)与它们上的代数函数的集合相关联,该集合形成交换环(即,函数可以相加和相乘)。现代研究涉及与代数簇相关的更复杂的代数结构,例如凝聚层范畴(范畴的概念是结合环的概念的推广)。该项目的一部分是建立同调镜像对称猜想的一些情况下,确定类别出现在两个看似无关的情况下的几何。该项目的另一部分旨在为弦理论中使用超级黎曼曲面(通常曲面的推广)的某些方面提供严格的数学基础。本计画提供研究训练机会给大学部及研究所学生,第一部份是关于穿孔球对称幂的同调镜像对称性。我们的目标是确定某些代数簇的部分包裹福谷类别的对称权力的穿孔领域的派生类别的相干层的类别决议。这可能有助于Ozsvath-Szabo范畴纽结不变量的新构造。第二部分是将Hirzebruch-Riemann-Roch公式推广到非仿射簇和栈上的矩阵分解范畴。PI也希望使用矩阵分解的范畴来找到G-等变Gromov-Witten理论的Landau-Ginzburg对应物。第三部分是利用节点三次体上的非对易阶实现结合型Yang-Baxter方程的三角解。第四部分与稳定超曲线的几何相关。PI提出了理解Mumford同构的类似物的极点的超曲线的模Berezinian的紧化的边界附近的稳定超曲线和研究在超曲线的模空间的集成中出现的一些问题。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Notes on fundamental algebraic supergeometry. Hilbert and Picard superschemes
  • DOI:
    10.1016/j.aim.2023.108890
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    U. Bruzzo;D. H. Ruipérez;A. Polishchuk
  • 通讯作者:
    U. Bruzzo;D. H. Ruipérez;A. Polishchuk
Geometrization of Trigonometric Solutions of the Associative and Classical Yang–Baxter Equations
A Landau–Ginzburg mirror theorem via matrix factorizations
Homological mirror symmetry for the symmetric squares of punctured spheres
穿孔球对称正方形的同调镜像对称性
  • DOI:
    10.1016/j.aim.2023.108942
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lekili, Yankı;Polishchuk, Alexander
  • 通讯作者:
    Polishchuk, Alexander
Elliptic zastava
  • DOI:
    10.1090/jag/803
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    M. Finkelberg;M. Matviichuk;A. Polishchuk
  • 通讯作者:
    M. Finkelberg;M. Matviichuk;A. Polishchuk
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Polishchuk其他文献

De Rham cohomology for supervarieties
超簇的 De Rham 上同调
  • DOI:
    10.1007/s40879-024-00736-2
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
A tribute to Sasha Beilinson
  • DOI:
    10.1007/s00029-018-0399-x
  • 发表时间:
    2018-02-16
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
$${\mathbb A}^{0|1}$$ A 0 | 1
$${mathbb A}^{0|1}$$ A 0 |
Schwartz $\kappa$-densities for the moduli stack of rank $2$ bundles on a curve over a local field
局部场曲线上的阶 $2$ 束的模堆栈的 Schwartz $kappa$-密度
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Braverman;D. Kazhdan;Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk
Moduli spaces of nonspecial pointed curves of arithmetic genus 1
  • DOI:
    10.1007/s00208-017-1562-y
  • 发表时间:
    2017-06-30
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Alexander Polishchuk
  • 通讯作者:
    Alexander Polishchuk

Alexander Polishchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Polishchuk', 18)}}的其他基金

Analytic Langlands Correspondence
分析朗兰兹通讯
  • 批准号:
    2349388
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Moduli of A-Infinity Structures and Related Topics
A-无穷大结构的模及相关主题
  • 批准号:
    1700642
  • 财政年份:
    2017
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
A-infinity structures and derived categories in algebraic geometry
代数几何中的 A-无穷大结构和派生范畴
  • 批准号:
    1400390
  • 财政年份:
    2014
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Derived categories techniques in algebraic geometry
代数几何中的派生范畴技术
  • 批准号:
    1001364
  • 财政年份:
    2010
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Complex geometry of noncommutative tori and t-structures on derived categories
派生范畴上非交换环面和 t 结构的复杂几何
  • 批准号:
    0601034
  • 财政年份:
    2006
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0527042
  • 财政年份:
    2004
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Topics in Algebraic Geometry, Non-commutative Geometry and Representation Theory
代数几何、非交换几何和表示论专题
  • 批准号:
    0302215
  • 财政年份:
    2003
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Homological Mirror Symmetry and Functional Equations
同调镜像对称和函数方程
  • 批准号:
    0070967
  • 财政年份:
    2000
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Sheaves on Witt Schemes and Trace Formula with Application to Representation Theory
数学科学:维特方案和迹公式及其在表示论中的应用
  • 批准号:
    9700458
  • 财政年份:
    1997
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant

相似海外基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
The geometry of braids and triangulated categories
辫子的几何形状和三角类别
  • 批准号:
    DE240100447
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Discovery Early Career Researcher Award
Towards Directed Model Categories
走向有向模型类别
  • 批准号:
    EP/Y033418/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Research Grant
Constructing and Classifying Pre-Tannakian Categories
前坦纳克阶范畴的构建和分类
  • 批准号:
    2401515
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
  • 批准号:
    2401184
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
  • 批准号:
    DP240101934
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Discovery Projects
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
  • 批准号:
    2316538
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Fellowship Award
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Eco Warrior: Expanding to new Plastic Free Categories
生态战士:扩展到新的无塑料类别
  • 批准号:
    10055912
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了