Tensor Categories and Representations of Quantized Algebras
量化代数的张量范畴和表示
基本信息
- 批准号:2001318
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Representation theory is a study of symmetries of space, such as our 3-dimensional space, or, more generally, a space with any (even infinite number) of dimensions. In this theory, symmetries are represented by linear transformations of this space, or, more explicitly, by matrices. Thus, a representation of a given symmetry structure is basically a collection of matrices which satisfy a certain natural system of nonlinear equations. The equations are determined by the exact type of symmetry structure we are representing - a group, a Lie algebra, or an associative algebra. Representations of a given structure themselves form a quite intricate and rich structure, which encodes relations (or mappings) between different representations. This higher-level structure is called the category of representations. For some type of structures (e.g. for groups, Lie algebras, quantum groups), representations can be multiplied; in this case the corresponding categories are tensor categories (as multiplication of representations is similar to multiplication of tensors). It turns out that the notion of a tensor category is very interesting in its own right, and that many tensor categories don't arise as categories of representations. The PI will investigate ordinary and tensor categories, some of which arise as representation categories and some of which don't, as well as the connections between them. In particular, complex rank generalizations of representation categories proposed by P. Deligne will be investigated. Roughly speaking, this is a generalization in which the number of elements of a set or rows of a matrix is allowed to be non-integer. This seemingly nonsensical setting becomes meaningful and useful when the invariants one is interested in turn out to be polynomials of the number of elements or rows, which is often true. The PI will also investigate quantizations of singular symplectic varieties, for instance symplectic resolutions. These are non-commutative algebras that appear in certain kinds of quantum field theories of recent interest as algebras of quantum observables. This project provides research training opportunities for graduate students.This project involves research on: tensor categories; quantum groups; representation theory in complex rank; cherednik algebras; short star-products on quantizations; analytic approach to Geometric Langlands program. The plan of PI's work is as follows. 1. Develop a theory of Frobenius functors for symmetric tensor categories in characteristic p and Frobenius exact categories; classify exact factorizations of fusion categories, in particular twisted Deligne products; classify fiber functors and module categories over the representation category of the small quantum group; compute the semisimplification of the category of tilting modules for a reductive group in small characteristic, and use it to compute the dimensions of tilting modules modulo p; prove quasi-motivicity of representations of braid groups arising from braided fusion categories; construct new symmetric tensor categories in characteristic p2 similar to the Etingof-Benson categories in characteristic 2; compute cohomology of these categories; develop Lie theory in the Verlinde category; develop a theory of symplectic reflection fusion categories; continue to develop the theory of actions of finite dimensional Hopf algebras on division algebras (in particular, fields); classify unipotent tensor categories. Work on a discrete analog of the monodromy theorem of Toledano Laredo for the Casimir connection, using dynamical Weyl groups, Study signatures of representations of quantum groups for |q|=1. 2. Continue to develop the ideas of P. Deligne, and extend representation theories of various classical structures (containing the symmetric group S_n or classical Lie groups GL(n),O(n),Sp(2n)) to complex values of the rank parameter n. These structures will include degenerate affine Hecke algebras, rational and trigonometric Cherednik algebras, symplectic reflection algebras, real reductive Lie groups (i.e., symmetric pairs), Lie superalgebras, affine Lie algebras, (parabolic) category O for reductive Lie algebras, Yangians, and other structures. Compute reducibility loci and obtain various character formulas and signature formulas in these representation theories, and answer various other representation theoretic questions which are known to be interesting in the classical setting. 3. Work on the representation theory of double Yangians, the theory of elliptic algebras, representations of cyclotomic Cherednik algebras, signatures of representations of Cherednik algebras, representations of Cherednik algebras in positive characteristic, direct and inverse image functors for Cherednik algebras. 4. Continue to develop the theory of short star-products on filtered quantizations. 5. Continue to work with E. Frenkel and D. Kazhdan on an analytic approach to the geometric Langlands correspondence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表示论是一门研究空间对称性的学科,比如我们的三维空间,或者更一般地说,一个具有任意(甚至无限)维度的空间。在这个理论中,对称性由这个空间的线性变换表示,或者更明确地说,由矩阵表示。因此,给定对称结构的表示基本上是满足非线性方程的特定自然系统的矩阵的集合。这些方程由我们所表示的对称结构的确切类型决定--一个群、一个李代数或一个结合代数。给定结构的表示本身形成了一个相当复杂和丰富的结构,它编码了不同表示之间的关系(或映射)。这种更高层次的结构被称为表征范畴。对于某些类型的结构(例如群、李代数、量子群),表示可以相乘;在这种情况下,对应的范畴是张量范畴(因为表示的乘法类似于张量的乘法)。事实证明,张量范畴的概念本身就非常有趣,而且许多张量范畴并不是作为表示范畴出现的。PI将研究普通和张量范畴,其中一些是作为表征范畴出现的,而另一些则不是,以及它们之间的联系。特别是,P. Deligne提出的表示范畴的复秩推广将被研究。粗略地说,这是一种推广,其中允许矩阵的集合或行的元素的数量为非整数。当人们感兴趣的不变量是元素或行数的多项式时,这种看似无意义的设置变得有意义和有用,这通常是真的。PI还将研究奇异辛簇的量子化,例如辛解析。这些非对易代数出现在某些种类的量子场论最近的兴趣作为代数的量子可观。该项目为研究生提供了研究训练的机会。该项目涉及研究:张量范畴;量子群;复秩表示论; cherednik代数;量子化的短星积;几何朗兰兹程序的分析方法。PI的工作计划如下。1.发展特征p和Frobenius精确范畴中对称张量范畴的Frobenius函子理论;对融合范畴的精确因子分解进行分类,特别是扭曲Deligne乘积;对小量子群表示范畴上的纤维函子和模范畴进行分类;计算小特征约化群的倾斜模范畴的半化简,并用它来计算模p的倾斜模的维度;证明由辫子融合范畴产生的辫子群表示的准动机性;在特征p2中构造类似于特征2中的Etingof-Benson范畴的新对称张量范畴;计算这些范畴的上同调;发展Verlinde范畴中的Lie理论;发展辛反射融合范畴的理论;继续发展有限维Hopf代数在除法代数(特别是域)上的作用的理论;对幂单张量范畴进行分类。使用动态外尔群,研究卡西米尔连接的达诺·拉雷多单值定理的离散模拟,研究量子群表示的签名|Q| =1时。2.继续发展P. Deligne的思想,将各种经典结构(包括对称群S_n或经典李群GL(n),O(n),Sp(2n))的表示理论推广到秩参数n的复值。这些结构将包括退化仿射Hecke代数、有理和三角Cherednik代数、辛反射代数、真实的约化李群(即,对称对),李超代数,仿射李代数,约化李代数的(抛物)范畴O,Yangians和其他结构。计算约化轨迹并获得这些表示论中的各种特征公式和签名公式,并回答已知在经典环境中有趣的各种其他表示论问题。3.工作的表示理论的双重杨吉亚,理论的椭圆代数,表示的分圆切雷德尼克代数,签名表示的切雷德尼克代数,表示的切雷德尼克代数的积极特征,直接和逆形象函子的切雷德尼克代数。4.继续发展滤子量子化的短星积理论。5.继续与E合作。Frenkel和D.该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Twisted traces and positive forms on quantized Kleinian singularities of type A
A 型量化克莱因奇点的扭曲迹线和正形式
- DOI:10.3842/sigma.2021.029
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Etingof P., Klyuev D.
- 通讯作者:Etingof P., Klyuev D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavel Etingof其他文献
Lower central series of a free associative algebra over the integers and finite fields
- DOI:
10.1016/j.jalgebra.2012.07.052 - 发表时间:
2012-12-15 - 期刊:
- 影响因子:
- 作者:
Surya Bhupatiraju;Pavel Etingof;David Jordan;William Kuszmaul;Jason Li - 通讯作者:
Jason Li
Incompressible tensor categories
不可压缩张量范畴
- DOI:
10.1016/j.aim.2024.109935 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:1.500
- 作者:
Kevin Coulembier;Pavel Etingof;Victor Ostrik - 通讯作者:
Victor Ostrik
On universal Lie nilpotent associative algebras
- DOI:
10.1016/j.jalgebra.2008.09.042 - 发表时间:
2009-01-15 - 期刊:
- 影响因子:
- 作者:
Pavel Etingof;John Kim;Xiaoguang Ma - 通讯作者:
Xiaoguang Ma
Hele–Shaw flows with a free boundary produced by multipoles
具有由多极产生的自由边界的 Hele-Shaw 流
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:1.9
- 作者:
Vladimir Entov;Pavel Etingof;Dmitry Kleinbock - 通讯作者:
Dmitry Kleinbock
Traces on finite $$ \mathcal{W} $$ -algebras
- DOI:
10.1007/s00031-010-9103-8 - 发表时间:
2010-06-26 - 期刊:
- 影响因子:0.400
- 作者:
Pavel Etingof;Travis Schedler - 通讯作者:
Travis Schedler
Pavel Etingof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavel Etingof', 18)}}的其他基金
PRIMES Experience: Broadening Math Research and Enrichment Options for High School Students
PRIMES 经验:拓宽高中生的数学研究和丰富选择
- 批准号:
2218846 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
PRIMES, MathROOTS, and CrowdMath: Expanding Opportunities for High School Students
PRIMES、MathROOTS 和 CrowdMath:为高中生提供更多机会
- 批准号:
1916120 - 财政年份:2019
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
PRIMES: Program for Research In Mathematics, Engineering, and Science for high school Students
PRIMES:高中生数学、工程和科学研究计划
- 批准号:
1519580 - 财政年份:2015
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
Tensor Categories and Representation Theory
张量范畴和表示论
- 批准号:
1502244 - 财政年份:2015
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
I. M. Gelfand Centennial Conference: A View of 21st Century Mathematics
I. M. Gelfand 百年纪念会议:21 世纪数学的观点
- 批准号:
1322213 - 财政年份:2013
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Representation Theory and applications to Combinatorics, Geometry and Quantum Physics
表示理论及其在组合学、几何和量子物理中的应用
- 批准号:
1358171 - 财政年份:2013
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
MIT PRIMES: Program for Research In Mathematics, Engineering, and Science for High School Students
麻省理工学院 PRIMES:高中生数学、工程和科学研究项目
- 批准号:
1238309 - 财政年份:2012
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Conference: Physics Mathematics Summer Institute
会议:物理数学暑期学院
- 批准号:
1065701 - 财政年份:2011
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Tensor categories, quantum groups, and Hecke algebras
张量范畴、量子群和赫克代数
- 批准号:
1000113 - 财政年份:2010
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
相似海外基金
Kazhdan-Laumon categories and representations
Kazhdan-Laumon 类别和表示
- 批准号:
557362-2021 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Postgraduate Scholarships - Doctoral
Kazhdan-Laumon categories and representations
Kazhdan-Laumon 类别和表示
- 批准号:
557362-2021 - 财政年份:2021
- 资助金额:
$ 65万 - 项目类别:
Postgraduate Scholarships - Doctoral
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T030771/1 - 财政年份:2021
- 资助金额:
$ 65万 - 项目类别:
Research Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T029455/1 - 财政年份:2020
- 资助金额:
$ 65万 - 项目类别:
Research Grant
Representations, Cohomology, and Geometry in Tensor Triangulated Categories
张量三角范畴中的表示、上同调和几何
- 批准号:
1701768 - 财政年份:2017
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
Standard objects, filtered categories and representations of boxes
标准对象、过滤类别和框表示
- 批准号:
282852568 - 财政年份:2015
- 资助金额:
$ 65万 - 项目类别:
Research Grants
Categories of Lie algebra representations, primitive ideals, and geometry of homogeneous ind-spaces
李代数表示的范畴、本原理想和齐次 ind 空间的几何
- 批准号:
280374544 - 财政年份:2015
- 资助金额:
$ 65万 - 项目类别:
Research Grants
Geometric representations of cluster categories, Brauer graph algebras and RNA secondary structures
簇类别、Brauer 图代数和 RNA 二级结构的几何表示
- 批准号:
EP/K026364/1 - 财政年份:2013
- 资助金额:
$ 65万 - 项目类别:
Research Grant
Quiver representations, singularity categories, and monoidal structures
Quiver 表示、奇点类别和幺半群结构
- 批准号:
219520899 - 财政年份:2012
- 资助金额:
$ 65万 - 项目类别:
Priority Programmes
Research on representations and categories of association schemes
关联计划的表现形式及类别研究
- 批准号:
21540011 - 财政年份:2009
- 资助金额:
$ 65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)