W-algebras and algebraic group actions
W-代数和代数群作用
基本信息
- 批准号:0900907
- 负责人:
- 金额:$ 13.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project proposes research on two subjects: 1) Representation theory of W-algebras, 2) uniqueness properties for algebraic group actions. W-algebras (of finite type) are certain finitely generated associative algebras associated with nilpotent elements in semisimple Lie algebras. They originate from the work of B. Kostant of late 70's. In 90's they were studied by physicists. Starting from 2000 they attracted lot of attention of specialists in Representation Theory: Brundan, Ginzburg, Kleshchev, Premet, and others. In two recent years the investigator discovered a completely new approach to W-algebras based on Deformation quantization. This new approach allowed to him to prove many conjectures on W-algebras (mostly due to Premet) and, in particular, obtain the classification of their irreducible finite dimensional modules. The investigator plans to continue the study of representations of W-algebras and their q-deformations. In particular, he plans to prove a conjecture of Brundan-Goodwin- Kleshchev on the structure of the category O of W-algebras. Algebraic transformation group theory is a classical topic of algebraic geometry and group theory. One of major developments in algebraic transformation groups in recent 25 years is the theory of spherical varieties developed by Brion, Knop, Luna, Panyushev, Vinberg, Vust, and others. Spherical varieties are a particularly nice class of varieties equipped with a reductive group action. When the group is a torus, spherical is the same as toric. One of the nice features of spherical varieties is that their classification may be obtained in entirely combinatorial terms. In the recent few years the investigator obtained certain uniqueness properties of spherical varieties in terms of their combinatorial invariants proving conjectures due to Brion, Knop and Luna. The investigator plans to generalize these results to arbitrary varieties equipped with an action of a reductive group. In particular, he plans to prove that a smooth affine G-variety is uniquely determined by its algebra of U-invariants.This research projects deals with different kinds of symmetries arising both in pure mathematics and in physics. For instance, W-algebras are certain algebraic structures appeared in pure algebraic studies of Kostant in late 70's. Since then they found a number of applications in representation theory. On the other hand they are a manifestation of the notion of W-symmetry from Conformal field theory extensively studied by physicists. So the investigator's research project will contribute to pure mathematics and may have some applications to physics. The second part of this research project deals with a more classical notion of symmetries coming from geometry.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目提出了两个主题的研究:1)W-代数的表示理论,2)代数群作用的唯一性。W-代数(有限型)是半单李代数中与幂零元相关联的一类非生成结合代数。它们源于B的工作。70年代末的科斯坦特。90年代,物理学家开始研究它们。从2000年开始,他们吸引了很多专家的注意力在表示理论:布伦丹,金兹伯格,Kleshchev,普雷梅特,和其他人。在最近的两年里,研究者发现了一种基于形变量子化的W-代数的全新方法。这种新的方法使他能够证明许多progratures对W-代数(主要是由于普雷梅),特别是,获得分类的不可约有限维模块。研究人员计划继续研究W-代数的表示及其q-变形。特别是,他计划证明一个猜想的布伦丹-古德温- Kleshchev的结构的范畴O的W-代数。代数变换群论是代数几何和群论的经典课题。球面簇理论是近25年来代数变换群理论的一个重要发展,它是由Brion,Knop,Luna,Panyushev,Vinberg,Vust等人提出的。球形变种是一类特别好的变种,具有还原性基团作用。当群是环面时,球面与环面相同。球形变种的一个很好的特点是它们的分类可以完全用组合术语来获得。近年来,研究者利用球簇的组合不变量得到了球簇的某些唯一性性质,证明了Brion,Knop和Luna等人的定理。研究人员计划将这些结果推广到任意品种配备了一个行动的还原组。特别是,他计划证明一个光滑仿射G-簇是唯一确定的代数的U-不变量。这个研究项目涉及不同种类的对称性都出现在纯数学和物理学。例如,W-代数是70年代后期Kostant在纯代数研究中出现的一类代数结构。从那时起,他们发现了一些应用在代表性理论。另一方面,它们是物理学家广泛研究的共形场论中W对称性概念的体现。因此,研究者的研究项目将有助于纯数学,并可能在物理学中有一些应用。这个研究项目的第二部分涉及来自几何的对称性的一个更经典的概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavel Etingof其他文献
Lower central series of a free associative algebra over the integers and finite fields
- DOI:
10.1016/j.jalgebra.2012.07.052 - 发表时间:
2012-12-15 - 期刊:
- 影响因子:
- 作者:
Surya Bhupatiraju;Pavel Etingof;David Jordan;William Kuszmaul;Jason Li - 通讯作者:
Jason Li
Incompressible tensor categories
不可压缩张量范畴
- DOI:
10.1016/j.aim.2024.109935 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:1.500
- 作者:
Kevin Coulembier;Pavel Etingof;Victor Ostrik - 通讯作者:
Victor Ostrik
On universal Lie nilpotent associative algebras
- DOI:
10.1016/j.jalgebra.2008.09.042 - 发表时间:
2009-01-15 - 期刊:
- 影响因子:
- 作者:
Pavel Etingof;John Kim;Xiaoguang Ma - 通讯作者:
Xiaoguang Ma
Hele–Shaw flows with a free boundary produced by multipoles
具有由多极产生的自由边界的 Hele-Shaw 流
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:1.9
- 作者:
Vladimir Entov;Pavel Etingof;Dmitry Kleinbock - 通讯作者:
Dmitry Kleinbock
Traces on finite $$ \mathcal{W} $$ -algebras
- DOI:
10.1007/s00031-010-9103-8 - 发表时间:
2010-06-26 - 期刊:
- 影响因子:0.400
- 作者:
Pavel Etingof;Travis Schedler - 通讯作者:
Travis Schedler
Pavel Etingof的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavel Etingof', 18)}}的其他基金
PRIMES Experience: Broadening Math Research and Enrichment Options for High School Students
PRIMES 经验:拓宽高中生的数学研究和丰富选择
- 批准号:
2218846 - 财政年份:2022
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
Tensor Categories and Representations of Quantized Algebras
量化代数的张量范畴和表示
- 批准号:
2001318 - 财政年份:2020
- 资助金额:
$ 13.78万 - 项目类别:
Continuing Grant
PRIMES, MathROOTS, and CrowdMath: Expanding Opportunities for High School Students
PRIMES、MathROOTS 和 CrowdMath:为高中生提供更多机会
- 批准号:
1916120 - 财政年份:2019
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
PRIMES: Program for Research In Mathematics, Engineering, and Science for high school Students
PRIMES:高中生数学、工程和科学研究计划
- 批准号:
1519580 - 财政年份:2015
- 资助金额:
$ 13.78万 - 项目类别:
Continuing Grant
Tensor Categories and Representation Theory
张量范畴和表示论
- 批准号:
1502244 - 财政年份:2015
- 资助金额:
$ 13.78万 - 项目类别:
Continuing Grant
I. M. Gelfand Centennial Conference: A View of 21st Century Mathematics
I. M. Gelfand 百年纪念会议:21 世纪数学的观点
- 批准号:
1322213 - 财政年份:2013
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
Representation Theory and applications to Combinatorics, Geometry and Quantum Physics
表示理论及其在组合学、几何和量子物理中的应用
- 批准号:
1358171 - 财政年份:2013
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
MIT PRIMES: Program for Research In Mathematics, Engineering, and Science for High School Students
麻省理工学院 PRIMES:高中生数学、工程和科学研究项目
- 批准号:
1238309 - 财政年份:2012
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
Conference: Physics Mathematics Summer Institute
会议:物理数学暑期学院
- 批准号:
1065701 - 财政年份:2011
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
Tensor categories, quantum groups, and Hecke algebras
张量范畴、量子群和赫克代数
- 批准号:
1000113 - 财政年份:2010
- 资助金额:
$ 13.78万 - 项目类别:
Continuing Grant
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Study on the structures and representations of infinite dimensional algebraic groups and Lie algebras, and applications to quasiperiodic structures
无限维代数群和李代数的结构和表示的研究,以及在准周期结构中的应用
- 批准号:
26400005 - 财政年份:2014
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of algebraic groups, Hecke algebras and complex reflection groups
代数群的表示论、赫克代数和复反射群
- 批准号:
13440014 - 财政年份:2001
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Etale endomorphisms of algebraic varieties
代数簇的 Etale 自同态
- 批准号:
13440009 - 财政年份:2001
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure Theory and Deformation Theory of Algebras with two multiplications
二次乘法代数的结构论和变形论
- 批准号:
12640028 - 财政年份:2000
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on clarifying algebraic structure of rings using each representation theory of algebras, group rings and Lie rings.
利用代数、群环和李环各自的表示论阐明环的代数结构的研究。
- 批准号:
11640019 - 财政年份:1999
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of finite algebraic groups
有限代数群的表示论
- 批准号:
10640041 - 财政年份:1998
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A research of algebraic groups and Lie algebras
代数群和李代数的研究
- 批准号:
08454002 - 财政年份:1996
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Group theory and related topics
群论及相关主题
- 批准号:
08304003 - 财政年份:1996
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Studies on Group Representations and Related Special Functions
群表示及相关特殊函数研究
- 批准号:
04640055 - 财政年份:1992
- 资助金额:
$ 13.78万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Modelling classical types: Algebraic group actions via algebras with symmetries
建模经典类型:通过具有对称性的代数进行代数群作用
- 批准号:
432521517 - 财政年份:
- 资助金额:
$ 13.78万 - 项目类别:
Research Grants