Tensor categories, quantum groups, and Hecke algebras

张量范畴、量子群和赫克代数

基本信息

  • 批准号:
    1000113
  • 负责人:
  • 金额:
    $ 48.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

This project proposes research on tensor categories; quantum groups; representation theory in complex rank; Hecke algebras, Cherednik algebras, symplectic reflection algebras; noncommutative algebra; Poisson homology. The PI's work plan is as follows. 1) Continue developing the general theory of finite tensor categories, in particular, of fusion categories. 2) Prove a discrete analog of the monodromy theorem of Toledano Laredo for the Casimir connection, using dynamical Weyl groups, prove the Felder-Varchenko conjectures on trace functions, and study the trigonometric, the discrete, and the discrete trigonometric analogs of the quantum shift-of-the-argument algebra. 3) Study finite dimensional representations of rational Cherednik algebras and symplectic reflection algebras, representations of continuous Hecke algebras, unitary representations of Cherednik algebras. Study various constructions which link representation theory of these algebras with Lie theory and the representation theory of quantum groups. 4) Develop the ideas of P. Deligne, and extend representation theories of various classical structures (containing the symmetric group or classical Lie groups) to complex values of the rank parameter n (these structures include degenerate affine Hecke algebras, rational and trigonometric Cherednik algebras, symplectic reflection algebras, real reductive Lie groups, Lie superalgebras, affine Lie algebras, parabolic category O for reductive Lie algebras, Yangians, and other structures). 5) Work on quantizations of multiplicative quiver varieties, and on the structure of the lower central series of associative algebras. 6) Continue to study the structure of the zeroth Poisson homology of Poisson varieties.Representation theory is a study of symmetry in a vector space. In this theory, symmetries are represented by linear transformations of this space (by matrices). Thus, a representation of a given symmetry structure is basically a collection of matrices which satisfy a certain natural system of nonlinear relations. The relations are determined by the exact type of structure to be represented such as a group, a Lie algebra, or an associative algebra. A higher-level structure is called the category of representations. For some type of structures (e.g. for groups, Lie algebras, quantum groups), representations can be multiplied to form tensor categories. The present project proposes to study many ordinary and tensor categories, some of which arise as representation categories and some of which don't, and to study connections between them. The PI proposes to study complex rank generalizations of representation categories proposed by Deligne. Roughly speaking, this is a generalization in which the number of rows of a matrix is allowed to be non-integer. This seemingly nonsensical setting becomes meaningful and useful in a situation when the interesting invariants are polynomials of the number of rows.
该项目提出了张量范畴的研究;量子群;复秩表示理论; Hecke代数,Cherednik代数,辛反射代数;非交换代数;泊松同调。PI的工作计划如下。1)继续发展有限张量范畴的一般理论,特别是融合范畴。 2)利用动力学Weyl群证明了Casimir联络的Toledano拉雷多单值定理的离散类比,证明了迹函数上的Felder-Varchenko定理,并研究了量子变元移位代数的三角类比、离散类比和离散三角类比。3)研究了有理Cherednik代数和辛反射代数的有限维表示,连续Hecke代数的表示,Cherednik代数的酉表示。研究将这些代数的表示理论与李理论和量子群的表示理论联系起来的各种构造。4)发展了P. Deligne的思想,并扩展了各种经典结构的表征理论(包含对称群或经典李群)到秩参数n的复值(这些结构包括退化仿射Hecke代数,有理和三角Cherednik代数,辛反射代数,真实的约化李群,李超代数,仿射李代数,约化李代数的抛物范畴O,Yangians和其他结构)。5)研究乘法的代数簇的量子化,以及结合代数的下中心级数的结构。6)继续研究泊松簇的第零泊松同调的结构。表示论是研究向量空间中对称性的一门学科。在这个理论中,对称性由这个空间的线性变换(矩阵)表示。因此,给定对称结构的表示基本上是满足非线性关系的特定自然系统的矩阵的集合。这些关系由要表示的结构的确切类型确定,例如群、李代数或结合代数。 更高层次的结构称为表示范畴。对于某些类型的结构(例如群,李代数,量子群),表示可以相乘以形成张量范畴。 本项目提出研究许多普通和张量范畴,其中一些是作为表示范畴出现的,而另一些则不是,并研究它们之间的联系。PI建议研究Deligne提出的表示类别的复秩推广。粗略地说,这是一种推广,其中允许矩阵的行数为非整数。当有趣的不变量是行数的多项式时,这种看似无意义的设置变得有意义和有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavel Etingof其他文献

Lower central series of a free associative algebra over the integers and finite fields
  • DOI:
    10.1016/j.jalgebra.2012.07.052
  • 发表时间:
    2012-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Surya Bhupatiraju;Pavel Etingof;David Jordan;William Kuszmaul;Jason Li
  • 通讯作者:
    Jason Li
Incompressible tensor categories
不可压缩张量范畴
  • DOI:
    10.1016/j.aim.2024.109935
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Kevin Coulembier;Pavel Etingof;Victor Ostrik
  • 通讯作者:
    Victor Ostrik
On universal Lie nilpotent associative algebras
  • DOI:
    10.1016/j.jalgebra.2008.09.042
  • 发表时间:
    2009-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Pavel Etingof;John Kim;Xiaoguang Ma
  • 通讯作者:
    Xiaoguang Ma
Hele–Shaw flows with a free boundary produced by multipoles
具有由多极产生的自由边界的 Hele-Shaw 流
Traces on finite $$ \mathcal{W} $$ -algebras
  • DOI:
    10.1007/s00031-010-9103-8
  • 发表时间:
    2010-06-26
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Pavel Etingof;Travis Schedler
  • 通讯作者:
    Travis Schedler

Pavel Etingof的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pavel Etingof', 18)}}的其他基金

PRIMES Experience: Broadening Math Research and Enrichment Options for High School Students
PRIMES 经验:拓宽高中生的数学研究和丰富选择
  • 批准号:
    2218846
  • 财政年份:
    2022
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
Tensor Categories and Representations of Quantized Algebras
量化代数的张量范畴和表示
  • 批准号:
    2001318
  • 财政年份:
    2020
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Continuing Grant
PRIMES, MathROOTS, and CrowdMath: Expanding Opportunities for High School Students
PRIMES、MathROOTS 和 CrowdMath:为高中生提供更多机会
  • 批准号:
    1916120
  • 财政年份:
    2019
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
PRIMES: Program for Research In Mathematics, Engineering, and Science for high school Students
PRIMES:高中生数学、工程和科学研究计划
  • 批准号:
    1519580
  • 财政年份:
    2015
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Continuing Grant
Tensor Categories and Representation Theory
张量范畴和表示论
  • 批准号:
    1502244
  • 财政年份:
    2015
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Continuing Grant
I. M. Gelfand Centennial Conference: A View of 21st Century Mathematics
I. M. Gelfand 百年纪念会议:21 世纪数学的观点
  • 批准号:
    1322213
  • 财政年份:
    2013
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
Representation Theory and applications to Combinatorics, Geometry and Quantum Physics
表示理论及其在组合学、几何和量子物理中的应用
  • 批准号:
    1358171
  • 财政年份:
    2013
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
MIT PRIMES: Program for Research In Mathematics, Engineering, and Science for High School Students
麻省理工学院 PRIMES:高中生数学、工程和科学研究项目
  • 批准号:
    1238309
  • 财政年份:
    2012
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
Conference: Physics Mathematics Summer Institute
会议:物理数学暑期学院
  • 批准号:
    1065701
  • 财政年份:
    2011
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
W-algebras and algebraic group actions
W-代数和代数群作用
  • 批准号:
    0900907
  • 财政年份:
    2009
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant

相似海外基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
  • 批准号:
    2303334
  • 财政年份:
    2023
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
  • 批准号:
    2154389
  • 财政年份:
    2022
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
Quantum Affine Oriented Frobenius Brauer Categories
量子仿射定向 Frobenius Brauer 类别
  • 批准号:
    575291-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
  • 批准号:
    2228888
  • 财政年份:
    2022
  • 资助金额:
    $ 48.47万
  • 项目类别:
    Standard Grant
Occupational and Environmental Exposures and Work Practices for Nanomaterials and Electronic Products
纳米材料和电子产品的职业和环境暴露以及工作实践
  • 批准号:
    10228390
  • 财政年份:
    2021
  • 资助金额:
    $ 48.47万
  • 项目类别:
Molecular and Cellular Mechanisms Mediating Structural and Functional Active Zone Maturation
介导结构和功能活性区成熟的分子和细胞机制
  • 批准号:
    10206877
  • 财政年份:
    2021
  • 资助金额:
    $ 48.47万
  • 项目类别:
Molecular and Cellular Mechanisms Mediating Structural and Functional Active Zone Maturation
介导结构和功能活性区成熟的分子和细胞机制
  • 批准号:
    10352455
  • 财政年份:
    2021
  • 资助金额:
    $ 48.47万
  • 项目类别:
Occupational and Environmental Exposures and Work Practices for Nanomaterials and Electronic Products
纳米材料和电子产品的职业和环境暴露以及工作实践
  • 批准号:
    10675746
  • 财政年份:
    2021
  • 资助金额:
    $ 48.47万
  • 项目类别:
Hyperplexed Quantum Dots for Multidimensional Cell Classification in Intact Tissue
用于完整组织中多维细胞分类的超复合量子点
  • 批准号:
    10597685
  • 财政年份:
    2021
  • 资助金额:
    $ 48.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了