Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks

合作研究:MLWiNS:干扰有限无线网络的 ANN

基本信息

  • 批准号:
    2003098
  • 负责人:
  • 金额:
    $ 20.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Demand for wireless data services will continue to rise rapidly in the foreseeable future. The goal of this project is to develop new advanced solutions for wireless access networks with the objectives of increasing network throughput and maximizing overall network utilities. Long-serving model-based solutions are facing severe limitations due to delays in tracking the ever-changing radio and network environment as well as measurement inaccuracies. The main novelty of this project is to bring new tools based on artificial neural networks (ANN) to meet those challenges. In particular, this project will investigate when, how, and why ANN-based learning techniques can be applied to a wide range of wireless networking problems with realistic constraints. This project will pursue transformative solutions that aim to benefit academia and industry alike. Specifically, this project will marry supervised and unsupervised learning techniques with time-tested models of physical resources, channels, traffic, and network utilities. An important task is to exploit commonalities of ANN-based solutions for a number of subproblems to develop a set of principled, holistic solutions for the overall wireless networking problem, seeking solutions that are scalable, computationally efficient, and highly adaptive. Pertinent learnability and complexity theories backing the solutions will also be developed, in order to offer generalizable design principles. The ANN-based solutions developed are expected to be a major building block of next generation wireless access networks with associated economic benefits.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在可预见的未来,对无线数据服务的需求将继续快速增长。该项目的目标是为无线接入网络开发新的先进解决方案,以提高网络吞吐量和最大化整体网络效用。由于跟踪不断变化的无线电和网络环境的延迟以及测量的不准确性,长期服务的基于模型的解决方案面临着严重的限制。该项目的主要新颖之处在于引入了基于人工神经网络(ANN)的新工具来应对这些挑战。特别是,该项目将研究基于人工神经网络的学习技术何时、如何以及为什么可以应用于具有现实约束的广泛的无线网络问题。该项目将寻求旨在使学术界和工业界都受益的变革性解决方案。具体来说,该项目将把监督和无监督学习技术与经过时间考验的物理资源、渠道、流量和网络实用程序模型结合起来。一项重要的任务是利用基于人工神经网络的解决方案的共性来解决许多子问题,为整个无线网络问题开发一套原则性的、整体的解决方案,寻求可扩展、计算效率高和高度自适应的解决方案。还将开发支持解决方案的相关易学性和复杂性理论,以提供可推广的设计原则。基于人工神经网络的解决方案有望成为下一代无线接入网络的主要组成部分,并带来相关的经济效益。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Applications and Techniques for Fast Machine Learning in Science.
  • DOI:
    10.3389/fdata.2022.787421
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Deiana, Allison McCarn;Tran, Nhan;Agar, Joshua;Blott, Michaela;Di Guglielmo, Giuseppe;Duarte, Javier;Harris, Philip;Hauck, Scott;Liu, Mia;Neubauer, Mark S.;Ngadiuba, Jennifer;Ogrenci-Memik, Seda;Pierini, Maurizio;Aarrestad, Thea;Baehr, Steffen;Becker, Juergen;Berthold, Anne-Sophie;Bonventre, Richard J.;Bravo, Tomas E. Muller;Diefenthaler, Markus;Dong, Zhen;Fritzsche, Nick;Gholami, Amir;Govorkova, Ekaterina;Guo, Dongning;Hazelwood, Kyle J.;Herwig, Christian;Khan, Babar;Kim, Sehoon;Klijnsma, Thomas;Liu, Yaling;Lo, Kin Ho;Nguyen, Tri;Pezzullo, Gianantonio;Rasoulinezhad, Seyedramin;Rivera, Ryan A.;Scholberg, Kate;Selig, Justin;Sen, Sougata;Strukov, Dmitri;Tang, William;Thais, Savannah;Unger, Kai Lukas;Vilalta, Ricardo;von Krosigk, Belina;Wang, Shen;Warburton, Thomas K.
  • 通讯作者:
    Warburton, Thomas K.
Deep Reinforcement Learning for Joint Spectrum and Power Allocation in Cellular Networks
  • DOI:
    10.1109/gcwkshps52748.2021.9681985
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasar Sinan Nasir;Dongning Guo
  • 通讯作者:
    Yasar Sinan Nasir;Dongning Guo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongning Guo其他文献

The public safety broadband network: A novel architecture with mobile base stations
公共安全宽带网络:带有移动基站的新颖架构
Vector precoding in wireless communications: a replica symmetric analysis
无线通信中的矢量预编码:复制对称分析
  • DOI:
    10.1145/1345263.1345312
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Müller;Dongning Guo;A. L. Moustakas
  • 通讯作者:
    A. L. Moustakas
Uplink-downlink bidirectional training of multiuser MIMO filters and precoders
多用户 MIMO 滤波器和预编码器的上下行双向训练
Low complexity scheduling algorithms for wireless networks with full duplex state exchange
具有全双工状态交换的无线网络的低复杂度调度算法
MMSE-based linear parallel interference cancellation in long-code CDMA
长码CDMA中基于MMSE的线性并行干扰消除

Dongning Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dongning Guo', 18)}}的其他基金

CIF: Small: Wireless Massive Access: From Fundamental Limits to Practical Design
CIF:小型:无线大规模接入:从基本限制到实际设计
  • 批准号:
    1910168
  • 财政年份:
    2019
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
CIF: Small: Many-User Information Theory: A New Paradigm
CIF:小型:多用户信息理论:新范式
  • 批准号:
    1423040
  • 财政年份:
    2014
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Virtual Full-Duplex Wireless Networking
合作研究:虚拟全双工无线网络
  • 批准号:
    1231828
  • 财政年份:
    2012
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Continuing Grant
CIF: Small: Limited Feedback and Information Exchange for Wireless Systems
CIF:小:无线系统的反馈和信息交换有限
  • 批准号:
    1018578
  • 财政年份:
    2010
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Continuing Grant
CAREER: Information Transmission and Optimal Estimation: Fundamentals and Applications
职业:信息传输和最优估计:基础知识和应用
  • 批准号:
    0644344
  • 财政年份:
    2007
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2203412
  • 财政年份:
    2021
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002821
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002874
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2002902
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003111
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2003131
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
  • 批准号:
    2003279
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
  • 批准号:
    2003082
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
  • 批准号:
    2002664
  • 财政年份:
    2020
  • 资助金额:
    $ 20.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了