Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks

合作研究:MLWiNS:干扰有限无线网络的 ANN

基本信息

  • 批准号:
    2003082
  • 负责人:
  • 金额:
    $ 18.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Demand for wireless data services will continue to rise rapidly in the foreseeable future. The goal of this project is to develop new advanced solutions for wireless access networks with the objectives of increasing network throughput and maximizing overall network utilities. Long-serving model-based solutions are facing severe limitations due to delays in tracking the ever-changing radio and network environment as well as measurement inaccuracies. The main novelty of this project is to bring new tools based on artificial neural networks (ANN) to meet those challenges. In particular, this project will investigate when, how, and why ANN-based learning techniques can be applied to a wide range of wireless networking problems with realistic constraints. This project will pursue transformative solutions that aim to benefit academia and industry alike. Specifically, this project will marry supervised and unsupervised learning techniques with time-tested models of physical resources, channels, traffic, and network utilities. An important task is to exploit commonalities of ANN-based solutions for a number of subproblems to develop a set of principled, holistic solutions for the overall wireless networking problem, seeking solutions that are scalable, computationally efficient, and highly adaptive. Pertinent learnability and complexity theories backing the solutions will also be developed, in order to offer generalizable design principles. The ANN-based solutions developed are expected to be a major building block of next generation wireless access networks with associated economic benefits.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在可预见的未来,对无线数据服务的需求将继续快速增长。该项目的目标是为无线接入网络开发新的高级解决方案,目标是增加网络吞吐量和最大限度地提高整体网络效用。由于跟踪不断变化的无线电和网络环境的延迟以及测量的不准确性,基于长期服务模型的解决方案正面临严重的限制。该项目的主要创新之处在于引入了基于人工神经网络(ANN)的新工具来应对这些挑战。特别是,这个项目将调查基于人工神经网络的学习技术何时、如何以及为什么可以应用于具有现实约束的广泛的无线网络问题。该项目将寻求变革性的解决方案,旨在使学术界和工业界都受益。具体地说,该项目将把有监督和无监督的学习技术与经过时间考验的物理资源、通道、流量和网络公用事业的模型结合起来。一项重要的任务是利用许多子问题的基于人工神经网络的解决方案的共性,为整个无线网络问题开发一套原则性的、整体的解决方案,寻求可扩展、计算高效和高度自适应的解决方案。还将开发支持解决方案的相关可学习性和复杂性理论,以提供可推广的设计原则。开发的基于ANN的解决方案预计将成为下一代无线接入网络的主要组成部分,并带来相关的经济利益。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifiability-Guaranteed Simplex-Structured Post-Nonlinear Mixture Learning via Autoencoder
Learning to Continuously Optimize Wireless Resource in Episodically Dynamic Environment
Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned Neural Models
  • DOI:
    10.1109/tsp.2022.3145190
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    S. Shrestha;Xiao Fu;Min-Fong Hong
  • 通讯作者:
    S. Shrestha;Xiao Fu;Min-Fong Hong
Deep Generative Model Learning For Blind Spectrum Cartography with NMF-Based Radio Map Disaggregation
Optimal Solutions for Joint Beamforming and Antenna Selection: From Branch and Bound to Graph Neural Imitation Learning
  • DOI:
    10.1109/tsp.2023.3244096
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    S. Shrestha;Xiao Fu;Mingyi Hong
  • 通讯作者:
    S. Shrestha;Xiao Fu;Mingyi Hong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao Fu其他文献

Fast algorithm based on the Hilbert transform for high-speed absolute distance measurement using a frequency scanning interferometry method
基于希尔伯特变换的快速算法,采用频率扫描干涉法进行高速绝对距离测量
  • DOI:
    10.1364/ao.447750
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Xiuming Li;Fajie Duan;Xiao Fu;Ruijia Bao;Jiajia Jiang;Cong Zhang
  • 通讯作者:
    Cong Zhang
Localization algorithm based on minimum condition number for wireless sensor networks
基于最小条件数的无线传感器网络定位算法
  • DOI:
    10.1007/s11767-013-2115-5
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Du Xiaoyu;Sun Lijuan;Xiao Fu;Wang Ruchuan
  • 通讯作者:
    Wang Ruchuan
Measurement of acoustic properties for passive-material samples using multichannel inverse filter
使用多通道逆滤波器测量无源材料样品的声学特性
Tensor-Based Parameter Estimation of Double Directional Massive Mimo Channel with Dual-Polarized Antennas
基于张量的双极化天线双向大规模MIMO信道参数估计

Xiao Fu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao Fu', 18)}}的其他基金

CIF: Small: Latent Neural Factor Models for Radio Cartography From Bits
CIF:小:来自 Bits 的无线电制图的潜在神经因子模型
  • 批准号:
    2210004
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Factor Analysis for Sensing and Learning
职业:传感和学习的非线性因子分析
  • 批准号:
    2144889
  • 财政年份:
    2022
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Continuing Grant
CCSS: Block-term Tensor Tools for Multi-aspect Sensing and Analysis
CCSS:用于多方面传感和分析的块项张量工具
  • 批准号:
    2024058
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
III: Small: Labeling Massive Data from Noisy, Incomplete and Crowdsourced Annotations
III:小:标记来自嘈杂、不完整和众包注释的海量数据
  • 批准号:
    2007836
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Multimodal Sensing and Analytics at Scale: Algorithms and Applications
协作研究:大规模多模态传感和分析:算法和应用
  • 批准号:
    1808159
  • 财政年份:
    2018
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2203412
  • 财政年份:
    2021
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002821
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
  • 批准号:
    2002874
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003081
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2002902
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
  • 批准号:
    2003098
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
  • 批准号:
    2003111
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
  • 批准号:
    2003131
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
  • 批准号:
    2003279
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
Collaborative Research: MLWiNS: Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
  • 批准号:
    2002664
  • 财政年份:
    2020
  • 资助金额:
    $ 18.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了