MLWiNS: Distributed Learning for the Nomadic Edge
MLWiNS:游牧边缘的分布式学习
基本信息
- 批准号:2003129
- 负责人:
- 金额:$ 59.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Edge computing is a paradigm that brings computing closer to where the data is generated, such as cellular networks, internet service providers, and enterprise networks. Typical edge nodes are static and are located in fixed points over a wired network. This project creates a new notion of edge computing, Nautilus, to support distributed machine learning over mobile nodes, such as vehicles. The project aims to create new techniques that can enable a new class of applications that leverage sensors mounted on vehicles. The applications range from smart transportation, to urban planning, and to broadly support smarter cities and communities. The broader impact of this project includes: (i) creation of a hands-on curriculum centered around computer vision techniques and machine learning; (ii) educating the broader public on wireless systems and machine learning technologies and their impact on our society; (iii) engagement with industrial partners and with regulatory bodies; (iv) public dissemination of the developed source code and prototype design; (v) mentoring of women STEM students through various campus programs as well as global ones and helping them identify opportunities for fulfilling careers in this domain.This project is structured in a three-tiered architecture consisting of the nomadic edge (in vehicles), the static edge (co-located with Radio Access Networks), and the cloud. To support diverse emerging applications across domains (e.g., smart transportation, urban planning, and more broadly across different aspects of smarter communities) which can issue queries spanning large spatio-temporal regions. The research agenda includes five complementary tasks: (i) Design of distributed and dynamic computer vision from the vehicular context, which involves collaborative and federated machine learning approaches to event and object detection under diverse conditions; (ii) Design of collaborative and distributed training and inference to address high level queries which will utilize various techniques of redundant and coded computing and communication to support efficiency and scalability; (iii) Estimation and prediction of the wireless network context to infer opportunities for communication between collaborating nomadic edge nodes, as well as between the nomadic and static edges; (iv) Design for privacy and security of both data and models; and (v) Systems integration and field trials to allow for technique refinement, evaluation, and reproducibility. Through a partnership with the local transit network — Madison Metro Transit, the research team plans to use the project research results and assist them in understanding various challenges, opportunities, and optimizations in planning various transportation and transit decisions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
边缘计算是一种范式,它使计算更接近数据生成的地方,例如蜂窝网络、互联网服务提供商和企业网络。典型的边缘节点是静态的,位于有线网络上的固定点上。该项目创建了一个新的边缘计算概念Nautilus,以支持移动节点(如车辆)上的分布式机器学习。该项目旨在创造新技术,使新型应用能够利用安装在车辆上的传感器。应用范围从智能交通到城市规划,以及广泛支持智慧城市和社区。该项目的广泛影响包括:(i)创建以计算机视觉技术和机器学习为中心的动手课程;(ii)向公众普及无线系统和机器学习技术及其对社会的影响;(iii)与工业合作伙伴和监管机构的合作;(iv)公开发布已开发的源代码和原型设计;(v)通过各种校园项目和全球项目指导STEM女性学生,帮助她们找到在该领域实现职业生涯的机会。该项目采用三层架构,包括游牧边缘(在车辆中)、静态边缘(与无线接入网络共存)和云。支持跨领域的各种新兴应用(例如,智能交通,城市规划,以及更广泛的智能社区的不同方面),这些应用可以发出跨越大时空区域的查询。研究议程包括五个互补任务:(i)从车辆环境中设计分布式和动态计算机视觉,其中涉及在不同条件下进行事件和目标检测的协作和联合机器学习方法;设计协作和分布式训练和推理以处理高级查询,这些查询将利用各种冗余和编码计算和通信技术来支持效率和可伸缩性;(iii)估计和预测无线网络环境,以推断协作游牧边缘节点之间以及游牧边缘和静态边缘之间的通信机会;数据和模型的隐私和安全设计;系统整合和实地试验,以便改进技术、评价和再现性。通过与当地交通网络-麦迪逊地铁运输的合作,研究小组计划利用项目研究成果,帮助他们了解各种挑战、机遇,并在规划各种交通和运输决策时进行优化。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sample Selection for Fair and Robust Training
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Yuji Roh;Kangwook Lee;Steven Euijong Whang;Changho Suh
- 通讯作者:Yuji Roh;Kangwook Lee;Steven Euijong Whang;Changho Suh
On the Limitations of Stochastic Pre-processing Defenses
- DOI:10.48550/arxiv.2206.09491
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Yue Gao;Ilia Shumailov;Kassem Fawaz;Nicolas Papernot
- 通讯作者:Yue Gao;Ilia Shumailov;Kassem Fawaz;Nicolas Papernot
Towards More Robust Keyword Spotting for Voice Assistants
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shimaa Ahmed;Ilia Shumailov;Nicolas Papernot;Kassem Fawaz
- 通讯作者:Shimaa Ahmed;Ilia Shumailov;Nicolas Papernot;Kassem Fawaz
Unpacking Privacy Labels: A Measurement and Developer Perspective on Google's Data Safety Section
揭开隐私标签的面纱:谷歌数据安全部分的衡量和开发者视角
- DOI:10.48550/arxiv.2306.08111
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Rishabh Khandelwal;Asmit Nayak;Paul Chung;Kassem Fawaz
- 通讯作者:Kassem Fawaz
Experimental Security Analysis of Sensitive Data Access by Browser Extensions
- DOI:10.1145/3589334.3645683
- 发表时间:2024-05
- 期刊:
- 影响因子:0
- 作者:Asmit Nayak;Rishabh Khandelwal;Earlence Fernandes;Kassem Fawaz
- 通讯作者:Asmit Nayak;Rishabh Khandelwal;Earlence Fernandes;Kassem Fawaz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suman Banerjee其他文献
A case for enhancing dual radio repeater performance through striping, aggregation, and channel sharing
通过条带化、聚合和信道共享增强双无线电中继器性能的案例
- DOI:
10.1145/2639108.2639133 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sayandeep Sen;Michael Griepentrog;Jongwon Yoon;Suman Banerjee - 通讯作者:
Suman Banerjee
Entrenchment and Investment
巩固和投资
- DOI:
10.2139/ssrn.2022867 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Suman Banerjee;Ronald W. Masulis - 通讯作者:
Ronald W. Masulis
Efficient peer location on the Internet
互联网上的高效对等定位
- DOI:
10.1016/j.comnet.2004.02.005 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Suman Banerjee;Christopher Kommareddy;Bobby Bhattacharjee - 通讯作者:
Bobby Bhattacharjee
VoltKey
伏特键
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kyuin Lee;Neil Klingensmith;Suman Banerjee;Younghyun Kim - 通讯作者:
Younghyun Kim
Can they hear me now?: a case for a client-assisted approach to monitoring wide-area wireless networks
他们现在能听到我的声音吗?:客户端辅助方法监控广域无线网络的案例
- DOI:
10.1145/2068816.2068827 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Sayandeep Sen;Jongwon Yoon;Joshua Hare;Justin Ormont;Suman Banerjee - 通讯作者:
Suman Banerjee
Suman Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suman Banerjee', 18)}}的其他基金
Collaborative Research: NeTS: Medium: Scalable Metasurface Array for mmWave Communication and Sensing
合作研究:NeTS:Medium:用于毫米波通信和传感的可扩展超表面阵列
- 批准号:
2312716 - 财政年份:2023
- 资助金额:
$ 59.33万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: SpecScape: Enabling a Global Spectrum Observatory through Mobile, Wide-band Spectrum Sensing Kits and a Software Ecosystem
合作研究:CCRI:新:SpecScape:通过移动、宽带频谱传感套件和软件生态系统实现全球频谱观测站
- 批准号:
2213688 - 财政年份:2022
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
CNS Core: Medium: Characterization, Mitigation, and Management of Active 3D Camera Interference
CNS 核心:中:主动 3D 相机干扰的表征、缓解和管理
- 批准号:
2107060 - 财政年份:2021
- 资助金额:
$ 59.33万 - 项目类别:
Continuing Grant
US Ignite: Focus Area 2: An Infrastructure to support Edge Computing in the Extreme
US Ignite:重点领域 2:支持极端边缘计算的基础设施
- 批准号:
1647152 - 财政年份:2017
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
Organizing a Workshop Series on Future Research Directions for Mobile Computing and Wireless Networking Systems
组织关于移动计算和无线网络系统未来研究方向的研讨会系列
- 批准号:
1734151 - 财政年份:2017
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
ICN-WEN: Collaborative Research: Light-Speed Networking (LSN): Refactoring the Wireless Network Stack to Dramatically Reduce Information Response Time
ICN-WEN:合作研究:光速网络 (LSN):重构无线网络堆栈以大幅缩短信息响应时间
- 批准号:
1719336 - 财政年份:2017
- 资助金额:
$ 59.33万 - 项目类别:
Continuing Grant
II-NEW: WiNEST: A Prototype for a City-scale "Living Laboratory" for Wide-area Wireless Experimentation
II-新:WiNEST:用于广域无线实验的城市规模“生活实验室”原型
- 批准号:
1629833 - 财政年份:2016
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
EAGER: A Feasibility Study for a Wide-Area WiMAX Infrastructure for Wireless Experimentation
EAGER:用于无线实验的广域 WiMAX 基础设施的可行性研究
- 批准号:
1555426 - 财政年份:2015
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
Population Analytics through a WiFi-based Edge Computing Platform
通过基于 WiFi 的边缘计算平台进行人口分析
- 批准号:
1525586 - 财政年份:2015
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
FIA-NP: Collaborative Research: The Next-Phase MobilityFirst Project - From Architecture and Protocol Design to Advanced Services and Trial Deployments
FIA-NP:协作研究:下一阶段 MobilityFirst 项目 - 从架构和协议设计到高级服务和试验部署
- 批准号:
1345293 - 财政年份:2014
- 资助金额:
$ 59.33万 - 项目类别:
Cooperative Agreement
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
Privacy-preserving machine learning through secure management of data's lifecycle in distributed systems: REMINDER
通过安全管理分布式系统中的数据生命周期来保护隐私的机器学习:提醒
- 批准号:
EP/Y036301/1 - 财政年份:2024
- 资助金额:
$ 59.33万 - 项目类别:
Research Grant
EAGER: Private Blockchain-Enabled Federated Learning Framework for Distributed Manufacturing Networks
EAGER:支持私有区块链的分布式制造网络联合学习框架
- 批准号:
2420964 - 财政年份:2024
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
CAREER: Holistic Distributed Resource Management and Discovery via Augmented Learning and Robust Optimization
职业:通过增强学习和鲁棒优化进行整体分布式资源管理和发现
- 批准号:
2339243 - 财政年份:2024
- 资助金额:
$ 59.33万 - 项目类别:
Continuing Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant
CAREER: Dynamic Distributed Learning in Spiking Neural Networks with Neural Architecture Search
职业:具有神经架构搜索的尖峰神经网络中的动态分布式学习
- 批准号:
2238227 - 财政年份:2023
- 资助金额:
$ 59.33万 - 项目类别:
Continuing Grant
CCSS: Distributed Swarm Learning for Internet of Things at the Edge
CCSS:边缘物联网的分布式群体学习
- 批准号:
2231209 - 财政年份:2023
- 资助金额:
$ 59.33万 - 项目类别:
Standard Grant