MLWiNS: Decentralized Heterogeneous Deep Learning for Efficient Wireless Spectrum Monitoring
MLWiNS:用于高效无线频谱监控的去中心化异构深度学习
基本信息
- 批准号:2003211
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As wireless networks evolve to be increasingly massive and complex, traditional spectrum monitoring methods with model-based signal processing techniques have become inadequate and may even fail to provide accurate wireless network evaluation. Meanwhile, deep learning techniques have been proven successful in standard centralized learning tasks (e.g., image classification), yet it is barely explored for large-scale wireless sensing systems, which entail unconventional node distribution, complex channel fading and user collaboration opportunities. This project develops innovative decentralized heterogeneous deep learning techniques for large-scale wireless systems. The outcomes of this project lead to technical innovations that tackle several major challenges of the state-of-the-art wireless sensing and management systems, including the incapability of conventional sensing and management schemes in ultra-wide wireless spectrum settings, the difficulty in handling heterogeneous tasks and non-IID data with deep learning technologies, as well as the costly overhead of communication and computation in distributed deep learning for large-scale networks.This project addresses the unique challenges of large-scale wireless spectrum sensing by developing a revolutionary decentralized deep learning framework. Three main thrusts are planned. In Thrust 1, major challenges of complex and large-scale wireless spectrum sensing nowadays are investigated, and an innovative deep learning-based solution is developed for practical spectrum sensing tasks. In Thrust 2, dedicated communication and computation schemes are developed to optimize the performance of the proposed decentralized deep learning framework. In Thrust 3, the very first exploratory effort is made to understand and utilize the intricate role of machine learning in spectrum management, based on the key observation that it consumes wireless network resources to bring in added value to network resource utilization. Experimental testing is demonstrated for practical spectrum monitoring applications. The proposed wireless sensing and management system can benefit a plethora of large-scale wireless network systems, such as a 5G wireless network and other large-scale mesh networking systems. The education plan enhances existing curricula and pedagogy by integrating interdisciplinary modules on embedded systems, mobile computing, and machine learning with newly developed teaching practices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着无线网络的日益庞大和复杂,传统的基于模型的信号处理技术的频谱监测方法已经显得力不从心,甚至无法提供准确的无线网络评估。同时,深度学习技术在标准的集中式学习任务(如图像分类)中已被证明是成功的,但它在大规模无线传感系统中几乎没有被探索,这需要非常规的节点分布、复杂的信道衰落和用户协作机会。该项目为大规模无线系统开发了创新的分散式、异构式深度学习技术。该项目的成果导致了技术创新,以应对最先进的无线感知和管理系统的几个主要挑战,包括传统的感知和管理方案在超宽带无线频谱环境中的无能为力,使用深度学习技术处理异质任务和非IID数据的困难,以及大规模网络的分布式深度学习中昂贵的通信和计算开销。该项目通过开发一个革命性的分散式深度学习框架来解决大规模无线频谱感知的独特挑战。计划了三个主要的推进项目。在推力1中,研究了当今复杂和大规模无线频谱感知面临的主要挑战,并为实际频谱感知任务开发了一种创新的基于深度学习的解决方案。在推力2中,开发了专用的通信和计算方案来优化所提出的去中心化深度学习框架的性能。在推力3中,第一次探索性的努力是理解和利用机器学习在频谱管理中的复杂作用,基于机器学习消耗无线网络资源来为网络资源利用带来附加值这一关键观察。对实际的频谱监测应用进行了实验测试。提出的无线传感和管理系统可以惠及过多的大规模无线网络系统,如5G无线网络和其他大规模网状网络系统。该教育计划通过将嵌入式系统、移动计算和机器学习的跨学科模块与新开发的教学实践相结合,增强了现有的课程和教学方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Distributed Swarm Learning for Edge Computing
- DOI:10.1109/icc45041.2023.10279508
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Xin Fan;Yue Wang;Yan Huo;Zhi Tian
- 通讯作者:Xin Fan;Yue Wang;Yan Huo;Zhi Tian
Fed2: Feature-Aligned Federated Learning
- DOI:10.1145/3447548.3467309
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Fuxun Yu;Weishan Zhang;Zhuwei Qin;Zirui Xu;Di Wang;Chenchen Liu;Zhi Tian;Xiang Chen
- 通讯作者:Fuxun Yu;Weishan Zhang;Zhuwei Qin;Zirui Xu;Di Wang;Chenchen Liu;Zhi Tian;Xiang Chen
CB-DSL: Communication-Efficient and Byzantine-Robust Distributed Swarm Learning on Non-i.i.d. Data
- DOI:10.1109/tccn.2023.3312345
- 发表时间:2022-08
- 期刊:
- 影响因子:8.6
- 作者:Xin Fan;Yue Wang;Yan Huo;Zhi Tian
- 通讯作者:Xin Fan;Yue Wang;Yan Huo;Zhi Tian
BEV-SGD: Best Effort Voting SGD against Byzantine Attacks for Analog Aggregation based Federated Learning Over the Air
BEV-SGD:针对基于模拟聚合的空中联邦学习的拜占庭攻击的尽力投票 SGD
- DOI:10.1109/jiot.2022.3164339
- 发表时间:2022
- 期刊:
- 影响因子:10.6
- 作者:Xin Fan;Yue Wang;Yan Huo;Zhi Tian
- 通讯作者:Zhi Tian
DQC-ADMM: Decentralized Dynamic ADMM With Quantized and Censored Communications
DQC-ADMM:具有量化和审查通信的去中心化动态 ADMM
- DOI:10.1109/tnnls.2021.3051638
- 发表时间:2021
- 期刊:
- 影响因子:10.4
- 作者:Liu, Yaohua;Wu, Gang;Tian, Zhi;Ling, Qing
- 通讯作者:Ling, Qing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiang Chen其他文献
NSTX-U theory, modeling and analysis results
NSTX-U理论、建模和分析结果
- DOI:
10.1088/1741-4326/ac5448 - 发表时间:
2022 - 期刊:
- 影响因子:3.3
- 作者:
W. Guttenfelder;D. Battaglia;E. Belova;N. Bertelli;M. Boyer;Choong;A. Diallo;V. Duarte;F. Ebrahimi;E. Emdee;N. Ferraro;E. Fredrickson;N. Gorelenkov;W. Heidbrink;Z. Ilhan;S. Kaye;Eun‐Hwa Kim;A. Kleiner;F. Laggner;M. Lampert;J. Lestz;Chang Liu;Deyong Liu;T. Looby;N. Mandell;R. Maingi;J. Myra;S. Munaretto;M. Podestà;T. Rafiq;R. Raman;M. Reinke;Y. Ren;J. Ruiz Ruiz;F. Scotti;S. Shiraiwa;V. Soukhanovskii;P. Vail;Zhirui Wang;W. Wehner;A. White;R. White;B. Woods;James Yang;S. Zweben;S. Banerjee;R. Barchfeld;R. Bell;J. Berkery;Amit Bhattacharjee;A. Bierwage;G. Canal;Xiang Chen;C. Clauser;N. Crocker;C. Domier;T. Evans;M. Francisquez;K. Gan;S. Gerhardt;R. Goldston;T. Gray;A. Hakim;G. Hammett;S. Jardin;R. Kaita;B. Koel;E. Kolemen;S. Ku;S. Kubota;B. LeBlanc;F. Levinton;J. Lore;N. Luhmann;R. Lunsford;R. Maqueda;J. Menard;J. Nichols;M. Ono;Jongkyu Park;F. Poli;T. Rhodes;J. Riquezes;D. Russell;S. Sabbagh;E. Schuster;David R. Smith;D. Stotler;B. Stratton;K. Tritz;Weixing Wang;B. Wirth - 通讯作者:
B. Wirth
Design strategies for two‐dimensional material photodetectors to enhance device performance
提高器件性能的二维材料光电探测器的设计策略
- DOI:
10.1002/inf2.12004 - 发表时间:
2019-03 - 期刊:
- 影响因子:22.7
- 作者:
Jun Wang;Jiayue Han;Xiang Chen;Xinran Wang - 通讯作者:
Xinran Wang
Dupilumab therapy in children aged 2–12 years with uncontrolled moderate‐to‐severe atopic dermatitis: A Chinese real‐world study
Dupilumab 治疗 2-12 岁未受控制的中重度特应性皮炎儿童:一项中国真实世界研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:9.2
- 作者:
Bin Zhou;C. Peng;Qiaozhi Cao;Jiayi Wang;Xiang Chen;Jie Li - 通讯作者:
Jie Li
Phenix U.S.-Japan Collaboration Investigation of Thermal and Mechanical Properties of Thermal Neutron-Shielded Irradiated Tungsten
Phoenix美日合作研究热中子屏蔽辐照钨的热性能和机械性能
- DOI:
10.1080/15361055.2019.1602390 - 发表时间:
2019 - 期刊:
- 影响因子:0.9
- 作者:
Lauren M. Garrison;Yutai Katoh;Josina W. Geringer;Masafumi Akiyoshi;Xiang Chen;Makoto Fukuda;Akira Hasegawa;Tatsuya Hinoki;Xunxiang Hu;Takaaki Koyanagi;Eric Lang;Michel McAlister;Joel McDuffee;Takeshi Miyazawa;Chad Parish;Emily Proehl;Nath - 通讯作者:
Nath
Analysis of lattice deformation originated from residual stress on performance of aluminum nitride-based bulk acoustic wave resonators
残余应力引起的晶格变形对氮化铝基体声波谐振器性能的影响分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:6.3
- 作者:
Xiyu Gu;Yan Liu;Yuanhang Qu;Min Wei;Xiang Chen;Ya;Wenjuan Liu;Bensong Pi;Bo Woon Soon;Yao Cai;Shishang Guo;Chengliang Sun - 通讯作者:
Chengliang Sun
Xiang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiang Chen', 18)}}的其他基金
CAREER: "Adapt, Learn, Collaborate" — Closing the Pervasive Edge AI Loop with Liquid Intelligence
职业生涯:“适应、学习、协作”——利用液态智能关闭普遍的边缘人工智能循环
- 批准号:
2146421 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Expanding the Interaction Bandwidth between Physicians and AI
职业:扩大医生与人工智能之间的互动带宽
- 批准号:
2047297 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CRII: CHS: Techniques for Helping Domain Experts Understand and Improve Models Underlying Intelligent Systems
CRII:CHS:帮助领域专家理解和改进智能系统底层模型的技术
- 批准号:
1850183 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
- 批准号:
1741338 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: EUReCa: Enabling Untethered VR/AR System via Human-centric Graphic Computing and Distributed Data Processing
CSR:小型:协作研究:EUReCa:通过以人为中心的图形计算和分布式数据处理实现不受束缚的 VR/AR 系统
- 批准号:
1717775 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Privacy Attacks and Defense Mechanisms in Online Social Networks
SaTC:核心:媒介:协作:在线社交网络中的隐私攻击和防御机制
- 批准号:
1704274 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Task-Cognizant Sparse Sensing for Inference
CIF:小型:用于推理的任务认知稀疏感知
- 批准号:
1527396 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Spectrum Sensing for Coexistence of Active and Passive Radio Services
EARS:协作研究:主动和被动无线电服务共存的频谱感知
- 批准号:
1547329 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
- 批准号:
2334449 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ODELIA - An Open Consortium for Decentralized Medical Artificial Intelligence
ODELIA - 去中心化医疗人工智能开放联盟
- 批准号:
10069847 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
Construction of Personalized and Decentralized Oriented Sightseeing Recommendation and Planning Foundation
个性化、去中心化的旅游推荐与规划基础建设
- 批准号:
23H03404 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Trustworthy decentralized AI for large-scale IoT representation learning
用于大规模物联网表征学习的值得信赖的去中心化人工智能
- 批准号:
22KJ0878 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows
PFI-TT: Decentralized, On-Demand Production of Dialysis Solutions and Similar Medical Fluids
PFI-TT:透析溶液和类似医用液体的分散式按需生产
- 批准号:
2234509 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Decentralized and Online Planning for Emergent Cooperation in Multi-Robot Teams
职业:多机器人团队紧急合作的去中心化在线规划
- 批准号:
2235622 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CRII: CNS: Secure Decentralized AI in Heterogeneous IoT Networks: Foundation and Application
CRII:CNS:异构物联网网络中的安全去中心化人工智能:基础与应用
- 批准号:
2245933 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Decentralized Autonomous Organization (DAO)
EAGER:去中心化自治组织(DAO)
- 批准号:
2335995 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Development of Low-Power Autonomous Decentralized Scheduling Technology for IoT Environment
物联网环境低功耗自主分散调度技术开发
- 批准号:
23K13331 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
User-friendly Analysis Platform for Decentralized Multi-site Diffusion MRI Studies
用于分散式多站点扩散 MRI 研究的用户友好分析平台
- 批准号:
10724720 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:














{{item.name}}会员




