Collaborative Research: Multiscale engineering of active stress in biomaterials

合作研究:生物材料主动应力的多尺度工程

基本信息

  • 批准号:
    2004380
  • 负责人:
  • 金额:
    $ 34.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical Abstract:Biological systems exhibit remarkable behaviors, including the ability to heal, reproduce, and be self-motile. Conventional synthetic materials do not display such properties because they are composed of inanimate molecules. In contrast, biological systems consist of active, energy transducing molecules which continuously push and pull on each other, producing active stresses. These active stresses make biological systems examples of active matter, and are ultimately are responsible for many of their unusual behaviors. Creating artificial active matter opens up a new route towards constructing materials with lifelike functionalities. However, a significant obstacle to realizing this possibility is an absence of understanding of how active stresses are produced: given specific elemental building blocks, there are not currently tools to either measure or theoretically predict the magnitude, type, or even the sign of the active stresses. The project will elucidate the foundational principles of active stress generation using a synergistic combination of experiments, simulations, and theory. The work will result in the creation of new experimental tools for measuring active stresses, new synthesis procedures for creating active materials, and new multi-scale modeling techniques for studying active matter. An integrated outreach program will bring the excitement of active matter to K-12 education, undergraduates, and graduates by combining interactive demonstrations, advanced interdisciplinary training, and intensive summer courses.Technical Abstract:The research focuses on studying assemblages of microtubules and kinesin-14 molecular motors. The work addresses three fundamental challenges in understanding active stresses generated by such active materials. First is the development of tools to measure active stresses at different length scales using optical tweezers, fluid flow measurements, microfluidics, and 3D printing, in combination with theory and simulations. Second, a novel system will be created in which active stress generation will be modulated by directly affixing kinesin-14 to microtubules in predetermined patterns. Theory and simulations will be used to guide which patterns to create, and conversely, measuring the resulting active stress generation in these designed materials will provide a stringent test of theory and simulations. Third, a multi-scale modeling framework will be developed and tested. These will be subsequently related to each other through a combination of analytical calculations and simulations. The resulting models will be made with continual feedback from experiments. Taken together, this work will establish new paradigms to study, understand, and engineer active stresses in active materials.This DMR grant supports research to understand the assemblages of microtubules and kinesin-14 molecular motors with funding from the Condensed Matter Physics (CMP) and Biomaterials (BMAT) Programs in the Division of Materials Research of the Mathematical and Physical Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:生物系统表现出显着的行为,包括愈合,繁殖和自我运动的能力。传统的合成材料不显示这样的特性,因为它们是由无生命的分子组成的。相比之下,生物系统由活跃的能量转换分子组成,这些分子不断地相互推拉,产生积极的压力。这些活跃的压力使生物系统成为活跃物质的例子,并最终导致了许多不寻常的行为。创造人工活性物质为构建具有逼真功能的材料开辟了一条新途径。然而,实现这种可能性的一个重大障碍是缺乏对主动应力如何产生的了解:给定特定的元素构建块,目前还没有工具来测量或理论上预测主动应力的大小、类型甚至符号。该项目将阐明主动应力产生的基本原理,使用实验,模拟和理论的协同组合。这项工作将导致创建新的实验工具来测量活性应力,创建活性材料的新合成程序,以及研究活性物质的新多尺度建模技术。一个综合的推广计划将带来兴奋的活性物质的K-12教育,本科生和研究生相结合的互动演示,先进的跨学科培训,和密集的暑期courses.Technical摘要:该研究的重点是研究组装的微管和驱动蛋白-14分子马达。这项工作解决了三个基本的挑战,在理解主动应力产生的活性材料。首先是开发工具,使用光学镊子,流体流动测量,微流体和3D打印,结合理论和模拟来测量不同长度尺度的主动应力。第二,将创建一个新的系统,其中主动应力的产生将被调制直接附着驱动蛋白-14到微管在预定的模式。理论和模拟将用于指导创建哪些图案,相反,测量这些设计材料中产生的主动应力将提供对理论和模拟的严格测试。第三,将开发和测试多尺度建模框架。随后将通过分析计算和模拟相结合将这些相互关联。由此产生的模型将通过不断的实验反馈来制作。总之,这项工作将建立新的范式来研究,理解,这项DMR拨款支持研究,以了解微管和驱动蛋白-14分子马达的组装,资金来自凝聚态物理学(CMP)和生物材料(BMAT)该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A design framework for actively crosslinked filament networks
  • DOI:
    10.1088/1367-2630/abd2e4
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Furthauer, Sebastian;Needleman, Daniel J.;Shelley, Michael J.
  • 通讯作者:
    Shelley, Michael J.
Engineering stability, longevity, and miscibility of microtubule-based active fluids
  • DOI:
    10.1039/d1sm01289d
  • 发表时间:
    2022-01-18
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Chandrakar,Pooja;Berezney,John;Dogic,Zvonimir
  • 通讯作者:
    Dogic,Zvonimir
Active Microphase Separation in Mixtures of Microtubules and Tip-Accumulating Molecular Motors
  • DOI:
    10.1103/physrevx.12.031006
  • 发表时间:
    2022-07-11
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Lemma, Bezia;Mitchell, Noah P.;Dogic, Zvonimir
  • 通讯作者:
    Dogic, Zvonimir
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Needleman其他文献

Active matter at the interface between materials science and cell biology
材料科学与细胞生物学界面处的活性物质
  • DOI:
    10.1038/natrevmats.2017.48
  • 发表时间:
    2017-07-20
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Daniel Needleman;Zvonimir Dogic
  • 通讯作者:
    Zvonimir Dogic
Nuclear biophysics: Spatial coordination of transcriptional dynamics?
核生物物理学:转录动力学的空间协调?
  • DOI:
    10.1016/j.ceb.2025.102561
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Tae Yeon Yoo;Bernardo Gouveia;Daniel Needleman
  • 通讯作者:
    Daniel Needleman
Rise of the source–sink model
源-汇模型的兴起
  • DOI:
    10.1038/461480a
  • 发表时间:
    2009-09-23
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Alexander F. Schier;Daniel Needleman
  • 通讯作者:
    Daniel Needleman
Rise of the source–sink model
源-汇模型的兴起
  • DOI:
    10.1038/461480a
  • 发表时间:
    2009-09-23
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Alexander F. Schier;Daniel Needleman
  • 通讯作者:
    Daniel Needleman

Daniel Needleman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Needleman', 18)}}的其他基金

Transitions: Spatiotemporal Behaviors of Metabolic Fluxes in Cell Biology
转变:细胞生物学中代谢流的时空行为
  • 批准号:
    2052305
  • 财政年份:
    2021
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Spindle Self-Organization and Bioenergetics in Vivo
体内纺锤体自组织和生物能学
  • 批准号:
    2013874
  • 财政年份:
    2020
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Continuing Grant
MRI: Development of a Microelectromagnetic, Laser Ablation Instrument for Biomechanics
MRI:开发用于生物力学的微电磁激光消融仪器
  • 批准号:
    1919834
  • 财政年份:
    2019
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
PFI-TT: Development of Metabolic Imaging to Improve Treatment of Infertility
PFI-TT:开发代谢成像以改善不孕不育的治疗
  • 批准号:
    1827309
  • 财政年份:
    2018
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Nonlinear microscopy for egg/embryo viability
非线性显微镜检查卵子/胚胎活力
  • 批准号:
    1540498
  • 财政年份:
    2015
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Nonequilibrium Physics of Spindle Assembly: Understanding the Response of the Spindle to Perturbations
主轴组件的非平衡物理:了解主轴对扰动的响应
  • 批准号:
    1305254
  • 财政年份:
    2013
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Continuing Grant
MRI-R2: Development of a System for Dynamic, Multipoint, Dual-Color Fluorescence Fluctuation Spectroscopy
MRI-R2:动态、多点、双色荧光涨落光谱系统的开发
  • 批准号:
    0959721
  • 财政年份:
    2010
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
CAREER: Physical Aspects of Spindle Self-Organization
职业:主轴自组织的物理方面
  • 批准号:
    0847188
  • 财政年份:
    2009
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
  • 批准号:
    2324580
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148646
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation
合作研究:多尺度心肌细胞机械适应
  • 批准号:
    2230435
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2328533
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
  • 批准号:
    2345048
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
  • 批准号:
    2331017
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
  • 批准号:
    2316676
  • 财政年份:
    2023
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了