Infrared Quantum Materials Based on Scandium-Containing III-Nitrides
基于含钪III族氮化物的红外量子材料
基本信息
- 批准号:2004462
- 负责人:
- 金额:$ 43.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical descriptionThis project is developing new technologically useful materials by incorporating a rarely used metal (scandium) into traditional semiconductors. This combination has unique light emitting and detecting capabilities with broad benefits to society including novel devices for medical imaging and solar cells. The research aims to understand, control, and adjust the atomic arrangement of these new materials to maximize light absorption in the invisible infrared range. The project also explores the effect of atomic imperfections in the semiconductors on the movement of free electrical charge. This program also links the research with the educational goal of increasing learning opportunities for students of all ages, inside and outside the traditional classroom. The investigators and students involved in this project participate in outreach activities organized either in-house or at local schools to increase exposure of K-12 students and the general public to modern scientific topics in materials science in a fun, project-oriented environment. Lesson plans are designed and experimental demonstrations of basic optical properties of matter are built for the middle-school summer camp “Physics Inside Out” at Purdue. To maximize impact at the high-school level, the activities engage teachers in summer research. In particular, the teachers are developing inquiry-based lesson plans incorporating concepts related to quantum science into the high-school curriculum to fulfill Indiana standards. The researchers also organize a hands-on workshop with take-home materials for the annual meeting of the Hoosier Association of Science Teachers.Technical descriptionThis project sets the foundation for a novel type of infrared materials using optical transitions between quantized states in the conduction band of nitride semiconductors incorporating the group IIIB transition-metal scandium. These semiconductors have unique electronic properties that make them suitable for advancing the functionality of semiconductor optoelectronic devices into spectral ranges currently inaccessible with other material systems. The innovative approach employs an emergent optoelectronic material, the wurtzite phase of Sc-Al-nitride that is lattice-matched to GaN, to mitigate strain-related issues that have impeded progress of nitride optoelectronics into the infrared so far. The research effort is interdisciplinary and involves material design and growth, plus structural and optical characterization. Polar and nonpolar ScAlN/GaN heterostructures are designed using extensive band-structure calculations. To achieve maximum material purity and monolayer-control of the atomic structure, the Sc-containing materials are grown by plasma-assisted molecular beam epitaxy on high quality quasi-bulk GaN substrates. The decisive task is to identify the epitaxial growth conditions that satisfy the most stringent requirements imposed by near-infrared optical processes. In order to correlate microstructure with optical and electronic properties, the structure of the semiconductor materials is comprehensively characterized with high-resolution x-ray diffraction, advanced transmission electron microscopy, and atom probe tomography. The band structure of the materials is probed experimentally with Fourier transform infrared spectroscopy and photoluminescence. The growth of these emergent materials advances the state-of-the-art in transition-metal nitride epitaxy. Uncharted mechanisms of material growth on polar and non-polar GaN substrates are scrutinized. This research also contributes to the knowledge base of the physics of infrared optical transitions. These infrared materials are expected to enable optoelectronics with functionality unmatched by current technologies. Moreover, the novel class of Sc-containing semiconductors benefit other applications such as high-electron mobility transistors, ultraviolet, thermoelectric, piezoelectric, and plasmonic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过将一种很少使用的金属(钪)掺入传统半导体中,开发新的技术上有用的材料。这种组合具有独特的发光和检测能力,对社会具有广泛的益处,包括用于医疗成像和太阳能电池的新型设备。该研究旨在了解,控制和调整这些新材料的原子排列,以最大限度地提高不可见红外范围内的光吸收。该项目还探索了半导体中原子缺陷对自由电荷运动的影响。该计划还将研究与增加所有年龄段学生在传统课堂内外的学习机会的教育目标联系起来。参与该项目的研究人员和学生参加内部或当地学校组织的外联活动,以增加K-12学生和公众在有趣的,以项目为导向的环境中接触材料科学的现代科学主题。为普渡大学的中学夏令营“物理学由内而外”设计了教案,并建立了物质基本光学性质的实验演示。为了最大限度地扩大在高中一级的影响,这些活动使教师参与暑期研究。特别是,教师们正在制定基于探究的课程计划,将量子科学相关概念纳入高中课程,以满足印第安纳州的标准。研究人员还组织了一个实践研讨会,为印第安纳州科学教师协会的年度会议提供带回家的材料。技术支持该项目为一种新型的红外材料奠定了基础,该材料使用了包含IIIB族过渡金属钪的氮化物半导体导带中量子态之间的光学跃迁。这些半导体具有独特的电子特性,使它们适合将半导体光电器件的功能推进到目前其他材料系统无法达到的光谱范围。这种创新方法采用了一种新兴的光电子材料,即与GaN晶格匹配的Sc-Al氮化物的纤锌矿相,以减轻迄今为止阻碍氮化物光电子学发展到红外线的应变相关问题。研究工作是跨学科的,涉及材料设计和生长,以及结构和光学表征。极性和非极性的ScAlN/GaN异质结构的设计使用广泛的能带结构计算。为了实现最大的材料纯度和原子结构的单层控制,含Sc材料通过等离子体辅助分子束外延生长在高质量的准体GaN衬底上。决定性的任务是确定满足近红外光学工艺最严格要求的外延生长条件。为了将微观结构与光学和电子特性相关联,半导体材料的结构通过高分辨率X射线衍射、先进的透射电子显微镜和原子探针断层扫描进行全面表征。利用傅里叶变换红外光谱和光致发光光谱对材料的能带结构进行了实验研究。这些新兴材料的生长促进了过渡金属氮化物外延的发展。极性和非极性GaN衬底上的材料生长的未知机制进行了仔细检查。这一研究也有助于红外光学跃迁物理的知识基础。这些红外材料有望使光电子技术具有当前技术无法比拟的功能。此外,新型含Sc半导体还有利于其他应用,例如高电子迁移率晶体管、紫外线、热电、压电和等离子体器件。该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估而被认为值得支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elimination of remnant phases in low-temperature growth of wurtzite ScAlN by molecular-beam epitaxy
- DOI:10.1063/5.0118075
- 发表时间:2022-11
- 期刊:
- 影响因子:3.2
- 作者:Brandon Dzuba;Trang Nguyen;Amrita Sen;R. Diaz;Megha Dubey;M. Bachhav;J. Wharry;M. Manfra;O. Malis
- 通讯作者:Brandon Dzuba;Trang Nguyen;Amrita Sen;R. Diaz;Megha Dubey;M. Bachhav;J. Wharry;M. Manfra;O. Malis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oana Malis其他文献
Oana Malis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oana Malis', 18)}}的其他基金
Infrared photonics using ferroelectric scandium-aluminum nitride semiconductors
使用铁电钪铝氮化物半导体的红外光子学
- 批准号:
2414283 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
Novel Infrared Optical Materials Based on III-Nitride Semiconductors: Growth, Structure and Properties
基于III族氮化物半导体的新型红外光学材料:生长、结构和性能
- 批准号:
1610893 - 财政年份:2016
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
CAREER: Nonpolar vertical-transport III-nitride devices for near-infrared applications
职业:用于近红外应用的非极性垂直传输 III 族氮化物器件
- 批准号:
1253720 - 财政年份:2013
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
Global Strain-Free III-Nitride Heterostructures: Growth, Structure and Near-Infrared Optical Properties
全局无应变 III 族氮化物异质结构:生长、结构和近红外光学性质
- 批准号:
1206919 - 财政年份:2012
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
- 批准号:
0935899 - 财政年份:2009
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
- 批准号:
0725384 - 财政年份:2007
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Indistinguishable Quantum Emitters in van der Waals Materials
范德华材料中难以区分的量子发射器
- 批准号:
DP240103127 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Discovery Projects
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
Quantum Simulation: A New Era for Materials Science
量子模拟:材料科学的新时代
- 批准号:
10107055 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Small Business Research Initiative
Gecko Inspired Autonomous Fabrication Of Programmable Two-dimensional Quantum Materials
壁虎启发可编程二维量子材料的自主制造
- 批准号:
EP/Y026284/1 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Research Grant
Probing Molecular Quantum Materials by Advanced Spectroscopies
通过先进光谱探测分子量子材料
- 批准号:
2349345 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
EAGER: IMPRESS-U: Quantum dynamics in novel chalcogenide materials and devices
EAGER:IMPRESS-U:新型硫族化物材料和器件中的量子动力学
- 批准号:
2403609 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
CAREER: Epitaxial stabilization of non-perovskite oxide quantum materials
职业:非钙钛矿氧化物量子材料的外延稳定
- 批准号:
2339913 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Continuing Grant
Conference: 2024 Rice Workshop on Quantum Materials Synthesis
会议:2024莱斯量子材料合成研讨会
- 批准号:
2420148 - 财政年份:2024
- 资助金额:
$ 43.19万 - 项目类别:
Standard Grant