Infrared photonics using ferroelectric scandium-aluminum nitride semiconductors
使用铁电钪铝氮化物半导体的红外光子学
基本信息
- 批准号:2414283
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical descriptionThis project investigates the unique electronic and optical properties brought about by incorporation of scandium into traditional nitride semiconductors. These materials enable novel light sources and detectors that can be used in practical applications ranging from chemical sensing and medical diagnostics to power electronics and energy harvesting. The research effort involves material design with computer simulations, synthesis of ultra-pure defect-free semiconductors, as well as structural and optical material characterization. This project also combines material research with educational and outreach activities that aim to increase learning opportunities for students of all ages, inside and outside the traditional classroom. The investigators and students involved in this project participate in outreach activities organized either in-house or at local schools to increase exposure of K-12 students and the general public to modern scientific topics in materials science in a fun, project-oriented environment. Lesson plans are designed and experimental demonstrations of basic optical properties of matter are built for the middle-school summer camp “Physics Inside Out” at Purdue. To maximize impact at the high-school level, the activities engage teachers in summer research. In particular, the teachers are developing inquiry-based lesson plans incorporating concepts related to quantum science into the high-school curriculum. The researchers also design hands-on activities with take-home materials for the annual meeting of the Hoosier Association of Science Teachers.Technical descriptionThe principal objective of this project is to establish wurtzite ScAlN as a viable photonic platform for novel infrared applications. This project exploits the unique native properties of ferroelectric ScAlN and further manipulates them within designed structures to facilitate utilization of the near-infrared range of the spectrum. In particular, optical transitions between quantized states in the conduction band of near lattice-matched ScAlN/GaN heterostructures are utilized to expand device capabilities to generate, detect, and modulate infrared light. III-nitride semiconductors have unique electronic properties that make them suitable for advancing the functionality of semiconductor devices into spectral ranges currently inaccessible with other material systems. The innovative approach employs the emergent photonic material Sc-Al-nitride to mitigate strain-related issues that have impeded progress of nitride photonics into the infrared in the past. The research effort is interdisciplinary and involves material design and growth, structural characterization, and optical characterization. ScAlN/GaN heterostructures are designed using extensive band-structure calculations. To achieve maximum material purity and monolayer-control of the atomic structure, the Sc-containing materials are grown by plasma-assisted molecular beam epitaxy on high quality quasi-bulk GaN substrates. A central task is to identify the epitaxial growth conditions that satisfy the most stringent requirements imposed by near-infrared optical processes. To correlate microstructure with optical and electronic properties, the structure of the semiconductor materials is comprehensively characterized with high-resolution x-ray diffraction, aberration-corrected transmission electron microscopy, and atom-probe tomography. The band structure of the materials is probed experimentally with Fourier transform infrared spectroscopy and photoluminescence. The research contributes to the fundamental understanding of the physics of intersubband optical transitions and nonlinear optical processes. These infrared materials are expected to immediately enable emitters and photodetectors with functionality unmatched by current technologies (wider spectral range, higher speeds, and better temperature performance). They are also ideal candidates for photonic integrated circuits as well as monolithic integration with Si electronics. Successful second-harmonic generation on chip opens avenues for other nonlinear processes such as difference frequency generation and parametric down-conversion. Moreover, the novel Sc-containing semiconductors are beneficial for other applications in electronic (e.g. high-electron mobility transistors), ultraviolet, thermoelectric, piezoelectric, and plasmonic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性说明本计画研究传统氮化物半导体中加入钪所带来的独特电子与光学性质。这些材料使新型光源和探测器能够用于从化学传感和医疗诊断到电力电子和能量收集的实际应用中。研究工作涉及计算机模拟的材料设计,超纯无缺陷半导体的合成,以及结构和光学材料表征。该项目还将材料研究与教育和外联活动相结合,旨在增加传统课堂内外所有年龄段学生的学习机会。参与该项目的研究人员和学生参加内部或当地学校组织的外联活动,以增加K-12学生和公众在有趣的,以项目为导向的环境中接触材料科学的现代科学主题。为普渡大学的中学夏令营“物理学由内而外”设计了教案,并建立了物质基本光学性质的实验演示。为了最大限度地扩大在高中一级的影响,这些活动使教师参与暑期研究。特别是,教师们正在制定基于探究的课程计划,将量子科学相关概念纳入高中课程。研究人员还设计了动手活动与带回家的材料的年度会议的胡塞尔协会的科学Teachers.Technical provisionThe主要目标,该项目是建立纤锌矿ScAlN作为一个可行的光子平台,为新的红外应用。 该项目利用铁电ScAlN独特的原生特性,并在设计的结构中进一步操纵它们,以促进光谱的近红外范围的利用。特别是,利用近晶格匹配的ScAlN/GaN异质结构的导带中的量子化状态之间的光学跃迁来扩展器件的能力,以产生、检测和调制红外光。III族氮化物半导体具有独特的电子特性,使其适合于将半导体器件的功能推进到目前其他材料系统无法达到的光谱范围。这种创新的方法采用了新兴的光子材料Sc-Al-nitride,以减轻过去阻碍氮化物光子学向红外方向发展的应变相关问题。研究工作是跨学科的,涉及材料设计和生长,结构表征和光学表征。ScAlN/GaN异质结构的设计使用广泛的能带结构计算。为了实现最大的材料纯度和原子结构的单层控制,含Sc材料通过等离子体辅助分子束外延生长在高质量的准体GaN衬底上。一个中心任务是确定外延生长条件,满足最严格的要求所施加的近红外光学工艺。为了将微观结构与光学和电子特性相关联,半导体材料的结构采用高分辨率X射线衍射、像差校正透射电子显微镜和原子探针断层扫描进行全面表征。利用傅里叶变换红外光谱和光致发光光谱对材料的能带结构进行了实验研究。这一研究有助于对子带间光学跃迁和非线性光学过程物理的基本理解。这些红外材料有望立即使发射器和光电探测器具有当前技术无法比拟的功能(更宽的光谱范围,更高的速度和更好的温度性能)。它们也是光子集成电路以及与硅电子器件单片集成的理想候选器件。成功的片上二次谐波产生为其他非线性过程(如差频产生和参数下变频)开辟了道路。此外,新型含钪半导体还可用于电子(如高电子迁移率晶体管)、紫外线、热电、压电和等离子体器件等领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oana Malis其他文献
Oana Malis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oana Malis', 18)}}的其他基金
Infrared Quantum Materials Based on Scandium-Containing III-Nitrides
基于含钪III族氮化物的红外量子材料
- 批准号:
2004462 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Novel Infrared Optical Materials Based on III-Nitride Semiconductors: Growth, Structure and Properties
基于III族氮化物半导体的新型红外光学材料:生长、结构和性能
- 批准号:
1610893 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Nonpolar vertical-transport III-nitride devices for near-infrared applications
职业:用于近红外应用的非极性垂直传输 III 族氮化物器件
- 批准号:
1253720 - 财政年份:2013
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Global Strain-Free III-Nitride Heterostructures: Growth, Structure and Near-Infrared Optical Properties
全局无应变 III 族氮化物异质结构:生长、结构和近红外光学性质
- 批准号:
1206919 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
- 批准号:
0935899 - 财政年份:2009
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Mid-infrared Semiconductor Lasers Based on Intersubband Transitions in the Valence Band of GaAs/AlAs Quantum Cascade Nanostructures
基于GaAs/AlAs量子级联纳米结构价带子带间跃迁的中红外半导体激光器
- 批准号:
0725384 - 财政年份:2007
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329014 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Rapid, simple, and ultrasensitive quantitation of KRAS ctDNA at the point of care using CRISPR/Cas amplification and digital resolution biosensor microscopy
使用 CRISPR/Cas 扩增和数字分辨率生物传感器显微镜在护理点快速、简单且超灵敏地定量 KRAS ctDNA
- 批准号:
10709211 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Non-invasive monitoring of gestational health via placental miRNA biomarkers using TRAP technology
使用 TRAP 技术通过胎盘 miRNA 生物标志物无创监测妊娠健康
- 批准号:
10754097 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329012 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329015 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329013 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
One-chip near-infrared computational imaging using integrated photonics
使用集成光子学的单芯片近红外计算成像
- 批准号:
23H05444 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
- 批准号:
10798646 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Collaborative Research: Fast and efficient phase-change photonics using low-dimensional materials
合作研究:使用低维材料的快速高效的相变光子学
- 批准号:
2210168 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Efficiently converting between optical and microwave photons using nano-photonics
使用纳米光子学在光学和微波光子之间进行高效转换
- 批准号:
580744-2022 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Alliance Grants