Non-Abelian phases and statistics in spin-3/2 hole gases

自旋 3/2 孔气体的非阿贝尔相和统计

基本信息

  • 批准号:
    1307247
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

****TECHNICAL ABSTRACT****This project will address topologically non-trivial properties of degenerate states in low dimensional hole gases. Non-Abelian phases will be measured in double-ring interferometric devices, where the contribution of Abelian phases can be minimized. Excitations with non-Abelian statistics will be studied in 1D semiconducting wires proximity-coupled to a conventional superconductor. Complementary experiments exploring the energy spectrum of bound states and phase-energy relation of Josephson junctions will be performed. Several fabrication approaches are proposed to reduce effects of localization, the major complication in mesoscopic devices. Finally, an interplay between non-Abelian nature of the wavefunction and non-Abelian statistics of excitation will be investigated. This project will support a PhD student who will be trained in semiconductor physics, fabrication and measurement techniques, including low temperature high magnetic field techniques, vacuum technology, low noise electrical characterization, scanning probe and electron-beam nanolithography. This broad experience will prepare the student for a successful career in technology or academia. An outreach program includes development of nanotechnology demonstrations and accompanying materials for high school students and physics teachers.****NON-TECHNICAL ABSTRACT****Quantum statistics, spin and symmetry of the wavefunction are central to the quantum mechanical understanding of the world. In most systems phases accumulated by a particle along a trajectory are additive and exchange of two particles amounts to a multiplication by a phase factor. However, over the last few decades it has been realized that in very special settings the accumulated phase depends on the topology of the system and particle exchanges do not have to commute, meaning the outcome of permutations depends on the order of the particle exchanges. The main objective of this work is to engineer a new state of matter where exotic particles with non-commuting properties can exist. New techniques to detect particles with these unconventional properties will be also developed. If successful, the research will enable development of a topological quantum bit, a key element of a revolutionary concept of a fault-tolerant quantum computer, which promises to increase computational power for some resource-intensive tasks exponentially, especially for encryption algorithms paramount for national security. The project will train a PhD student working at the edge of nanotechnology, which is the best hands-on training in science and engineering for a successful career in technology or academia. An outreach program includes development of nanotechnology demonstrations and accompanying materials for high school students and physics teachers.
* 技术摘要 * 本项目将讨论低维空穴气体中简并态的拓扑非平凡性质。非阿贝尔相位将在双环干涉装置中测量,其中阿贝尔相位的贡献可以被最小化。非阿贝尔统计的激发将在一维半导体线邻近耦合到一个传统的超导体进行研究。我们将进行补充实验,探索束缚态的能谱和约瑟夫森结的相能关系。提出了几种制造方法,以减少本地化的影响,在介观器件的主要并发症。最后,将研究波函数的非阿贝尔性质和激发的非阿贝尔统计之间的相互作用。该项目将支持一名博士生,他将接受半导体物理,制造和测量技术的培训,包括低温高磁场技术,真空技术,低噪声电气特性,扫描探针和电子束纳米光刻。这种广泛的经验将为学生在技术或学术界的成功职业生涯做好准备。一个推广计划包括为高中学生和物理教师开发纳米技术演示和配套材料。非技术摘要 * 量子统计,自旋和波函数的对称性是量子力学理解世界的核心。在大多数系统中,由粒子沿着轨迹累积的相位是可加的,并且两个粒子的交换相当于乘以相位因子。然而,在过去的几十年里,人们已经意识到,在非常特殊的设置中,累积相位取决于系统的拓扑结构,并且粒子交换不必对易,这意味着排列的结果取决于粒子交换的顺序。这项工作的主要目标是设计一种新的物质状态,在这种状态下,具有非对易性质的奇异粒子可以存在。 探测具有这些非常规特性的粒子的新技术也将被开发出来。如果成功,该研究将能够开发拓扑量子位,这是容错量子计算机革命性概念的关键要素,有望成倍增加某些资源密集型任务的计算能力,特别是对于国家安全至关重要的加密算法。该项目将培养一名在纳米技术边缘工作的博士生,这是科学和工程领域最好的实践培训,有助于在技术或学术界取得成功。一个推广计划包括为高中学生和物理教师开发纳米技术演示和配套材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Rokhinson其他文献

Leonid Rokhinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Rokhinson', 18)}}的其他基金

Topological superconductivity and high order non-abelian excitations
拓扑超导和高阶非阿贝尔激发
  • 批准号:
    2005092
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EAGER: BRAIDING: High order non-Abelian excitations for topologically protected qubits
EAGER:BRAIDING:拓扑保护量子位的高阶非阿贝尔激励
  • 批准号:
    1836758
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Interplay between strongly correlated quantum Hall states and superconductivity
强相关量子霍尔态与超导之间的相互作用
  • 批准号:
    1610139
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Multifunctional devices based on coupled phase transitions in antiferromagnetic semiconductors
EAGER:基于反铁磁半导体耦合相变的多功能器件
  • 批准号:
    1200014
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Spin degree of freedom in hole semiconductor nanostructures
职业:空穴半导体纳米结构的自旋自由度
  • 批准号:
    0348289
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

一类特殊Abelian群的子群计数问题
  • 批准号:
    12301006
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Abelian沙堆模型的随机变体
  • 批准号:
    12101505
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超导量子电路阵列中的人工Non-Abelian规范场及相关光子拓扑物理
  • 批准号:
    11774114
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-Abelian Hodge Theory and Transcendence
非阿贝尔霍奇理论与超越
  • 批准号:
    2401383
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
  • 批准号:
    2889914
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
CAREER: Novel platforms for topology and non-Fermi liquids: From projected topological branes to non-Abelian and fractional materials
职业:拓扑和非费米液体的新颖平台:从投影拓扑膜到非阿贝尔和分数材料
  • 批准号:
    2238679
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
The Frobenius action on curves and abelian varieties
曲线和阿贝尔簇上的弗罗贝尼乌斯作用
  • 批准号:
    2302511
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
  • 批准号:
    2304697
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Abelian Varieties, Hecke Orbits, and Specialization
阿贝尔簇、赫克轨道和特化
  • 批准号:
    2337467
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Shimura Varieties and Abelian Varieties
志村品种和阿贝尔品种
  • 批准号:
    2200449
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
  • 批准号:
    2201124
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
  • 批准号:
    2231958
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Dynamics on Calabi--Yau and abelian varieties
卡拉比动态--丘和阿贝尔变种
  • 批准号:
    EP/W026554/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了