EAGER: BRAIDING: High order non-Abelian excitations for topologically protected qubits

EAGER:BRAIDING:拓扑保护量子位的高阶非阿贝尔激励

基本信息

  • 批准号:
    1836758
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Abstract: Quantum statistics is central to the quantum mechanical understanding of the world. All known particles have so-called Abelian statistics, meaning that result of several consecutive particle exchanges does not depend on the order of the exchanges. Recently it has been proposed that particles with non-Abelian statistics can be realized in some exotic systems, and signatures of simplest such non-Abelian particles - Majorana fermions - have been reported. The main driving force in the search for these elusive excitations, apart from scientific curiosity, is a possibility to realize a fault tolerant quantum computer. Qubits based on Majorana fermions have their limitations, and the main objective on this proposal is to develop a new system where more computationally useful higher order non-Abelian excitations can be realized. Technical Abstract: The main objective of the proposed research is to develop a system where high-order non-Abelian excitations can be realized and manipulated. The non-Abelian statistics (the notion that a result of consecutive exchanges of several identical particles depends on the order of the exchanges) is at the heart of a revolutionary concept to realize a fault-tolerant quantum computer. Current efforts are focused on the development of Majorana-based qubits, the simplest non-Abelian particles. Majorana-based qubits are not computationally universal, though, and higher order non-Abelions are required to realize a universal gate. Specifically, spin transitions in the fractional quantum Hall effect regime will be explored to realize a reconfigurable network of helical channels with fractionalized charged excitations. Demonstration of induced superconductivity in these channels will be the major milestone. Quantum statistics of excitations formed at a boundary of trivial and topologically non-trivial superconductors will be investigated in multi-gate devices, where network of topological channels can be reconfigured within a two-dimensional plane.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:量子统计是量子力学理解世界的核心。所有已知的粒子都有所谓的阿贝尔统计量,这意味着连续几个粒子交换的结果不依赖于交换的顺序。最近有人提出在一些奇异系统中可以实现具有非阿贝尔统计量的粒子,并报道了最简单的这种非阿贝尔粒子——马约拉纳费米子的特征。除了对科学的好奇之外,寻找这些难以捉摸的刺激的主要驱动力是实现容错量子计算机的可能性。基于马约拉纳费米子的量子比特有其局限性,本提案的主要目标是开发一种新的系统,在该系统中可以实现更多计算上有用的高阶非阿贝尔激励。技术摘要:本研究的主要目标是开发一种可以实现和操纵高阶非阿贝尔激励的系统。非阿贝尔统计(几个相同粒子连续交换的结果取决于交换顺序的概念)是实现容错量子计算机的革命性概念的核心。目前的工作重点是开发基于马约拉纳的量子比特,这是最简单的非阿贝尔粒子。然而,基于马约拉纳的量子位在计算上并不是通用的,要实现通用门需要更高阶的非abelion。具体而言,将探索分数量子霍尔效应中的自旋跃迁,以实现具有分数电荷激励的可重构螺旋通道网络。这些通道中诱导超导性的证明将是主要的里程碑。在多栅极器件中,拓扑通道网络可以在二维平面内重新配置,在平凡和拓扑非平凡超导体边界形成的激发的量子统计将被研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering parafermions in helical Luttinger liquids
螺旋路廷格液体中的工程参数
  • DOI:
    10.1117/12.2595632
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lyanda-Geller, Yuli;Ponomarenko, Vadim;Wang, Ying;Rokhinson, Leonid
  • 通讯作者:
    Rokhinson, Leonid
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Rokhinson其他文献

Leonid Rokhinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Rokhinson', 18)}}的其他基金

Topological superconductivity and high order non-abelian excitations
拓扑超导和高阶非阿贝尔激发
  • 批准号:
    2005092
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Interplay between strongly correlated quantum Hall states and superconductivity
强相关量子霍尔态与超导之间的相互作用
  • 批准号:
    1610139
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Non-Abelian phases and statistics in spin-3/2 hole gases
自旋 3/2 孔气体的非阿贝尔相和统计
  • 批准号:
    1307247
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EAGER: Multifunctional devices based on coupled phase transitions in antiferromagnetic semiconductors
EAGER:基于反铁磁半导体耦合相变的多功能器件
  • 批准号:
    1200014
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Spin degree of freedom in hole semiconductor nanostructures
职业:空穴半导体纳米结构的自旋自由度
  • 批准号:
    0348289
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Center for Braiding Indigenous Knowledges and Science (CBIKS)
编织土著知识和科学中心 (CBIKS)
  • 批准号:
    2243258
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Topological phases by momentum space braiding
动量空间编织的拓扑相
  • 批准号:
    EP/W00187X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
  • 批准号:
    567412-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    PromoScience
Braiding the Environmental and Cultural Importance of Wetlands in Education throughout Mi'kma'ki
将湿地的环境和文化重要性融入整个 Mikmaki 的教育中
  • 批准号:
    577367-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    PromoScience
Braiding Opportunities in Training, Advocacy, and Networking for Young Scientists (BOTANY Scientists)
为年轻科学家(植物科学家)提供培训、宣传和网络机会
  • 批准号:
    2216268
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Braiding Operation using SFQ Current Pulses for Topological Quantum Computer
拓扑量子计算机中使用 SFQ 电流脉冲的编织操作
  • 批准号:
    21K18708
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Koh-learning in our watersheds: Braiding voices, well-being and ways of knowing to transform learning in the Nechako watershed
我们流域的 Koh 学习:编织声音、福祉和认知方式,以改变 Nechako 流域的学习
  • 批准号:
    567412-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    PromoScience
Zero energy modes in vortex cores: Spectroscopy and Majorana carousel braiding
涡核中的零能量模式:光谱学和马约拉纳旋转木马编织
  • 批准号:
    2104757
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
  • 批准号:
    2037996
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了