Extraordinary Polaritonic Heat Conduction
非凡的极化热传导
基本信息
- 批准号:2005181
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract: Heat transfer is ubiquitous and plays an important role in our daily lives and industrial processes, such as cooling of computer chips and heating of buildings. In classical textbooks of thermal physics, it is well known that the dominant mode of heat transfer in solids is heat conduction, which is known to be slow (travels at around the speed of sound) and diffusive (non-directional). This project studies a new heat conduction mechanism that combines the light in vacuum and sound in solids to conduct heat at high speed (on the order of speed of light) and with a high degree of directionality. The study is important as it may contribute to diverse applications such as more efficient thermal management of computer chips, light emitting diodes, and buildings. By integrating photonics, thermal science, and nanotechnologies, the project provides an excellent interdisciplinary platform to educate and train female graduate students in physics and engineering and offers attractive hands-on laboratory experience for undergraduate and local high-school students from underrepresented minority groups. Technical Abstract: Heat conduction in solids is normally described as a diffusion process with short mean free path (MFP 10 microns) associated with the main heat carriers, such as phonons and electrons. The goal of this project is to theoretically and experimentally investigate extraordinary thermal transport phenomena in a new regime of heat conduction mediated by surface phonon polariton (SPhP), which originates from the coupling between optical phonon and photon. SPhP is highly confined along the interface between a polar dielectric material and its surroundings and thus can carry high energy flux, comparable to or even higher than that of phonons in a solid. Under suitable conditions, SPhP can have extremely long propagation lengths (mm or longer) even at room and high temperature, and therefore, can exhibit extraordinary behaviors over a much longer distance. The project utilizes novel experimental techniques in nanoscale device fabrication and high-resolution nano-watt calorimetry, combined with rigorous theoretical modeling and numeric simulation, to explore extraordinary SPhP heat conduction phenomena in polar dielectric nanostructures, including low-dimensional heat conduction, non-diffusive and quantum thermal transport, and dynamically tunable thermal transport.This Division of Materials Research (DMR) grant supports research to investigate extraordinary thermal transport phenomena in a new regime of heat conduction mediated by surface phonon polariton with funding from the Condensed Matter Physics (CMP) Program in the DMR of the Mathematical and Physical Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:传热无处不在,在我们的日常生活和工业过程中发挥着重要作用,例如计算机芯片的冷却和建筑物的供暖。在热物理学的经典教科书中,众所周知,固体中传热的主要模式是热传导,众所周知,热传导是缓慢的(以声速传播)和扩散的(无方向性)。该项目研究了一种新的导热机制,将真空中的光与固体中的声音结合起来,以高速(光速数量级)和高度方向性传导热量。这项研究很重要,因为它可能有助于各种应用,例如更有效的计算机芯片、发光二极管和建筑物的热管理。通过整合光子学、热科学和纳米技术,该项目提供了一个优秀的跨学科平台来教育和培训物理和工程学方面的女研究生,并为来自少数群体的本科生和当地高中生提供有吸引力的实践实验室经验。 技术摘要:固体中的热传导通常被描述为与主要热载体(例如声子和电子)相关的平均自由程较短(MFP 10 微米)的扩散过程。该项目的目标是从理论上和实验上研究由表面声子极化子(SPhP)介导的新热传导机制中的异常热传输现象,该现象源于光学声子和光子之间的耦合。 SPhP 沿着极性介电材料与其周围环境之间的界面被高度限制,因此可以携带高能通量,与固体中的声子相当甚至更高。在合适的条件下,即使在室温和高温下,SPhP也可以具有极长的传播长度(毫米或更长),因此可以在更长的距离上表现出非凡的行为。该项目利用纳米器件制造和高分辨率纳瓦量热学的新颖实验技术,结合严格的理论建模和数值模拟,探索极性介电纳米结构中非凡的SPhP热传导现象,包括低维热传导、非扩散和量子热传输以及动态可调热传输。 (DMR) 拨款支持在数学和物理科学理事会 DMR 凝聚态物理 (CMP) 项目的资助下,研究由表面声子极化子介导的新热传导机制中的异常热传输现象。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plasmonically Enhanced Thermal Radiation by Means of Surface Phonon Polaritons
- DOI:10.1103/physrevapplied.14.064013
- 发表时间:2020-12-03
- 期刊:
- 影响因子:4.6
- 作者:Shin, Sunmi;Chen, Renkun
- 通讯作者:Chen, Renkun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Renkun Chen其他文献
Modeling of hydrogen liquefaction using magnetocaloric cycles with permanent magnets
使用永磁体磁热循环模拟氢液化
- DOI:
10.1016/j.ijrefrig.2020.06.032 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tianshi Feng;Renkun Chen;Robin V. Ihnfeldt - 通讯作者:
Robin V. Ihnfeldt
Emerging Materials and Strategies for Personal Thermal Management
- DOI:
10.1002/aenm.201903921 - 发表时间:
2020 - 期刊:
- 影响因子:27.8
- 作者:
Run Hu;Yida Liu;Sunmi Shin;Shiyao Huang;Xuecheng Ren;Weicheng Shu;Jingjing Cheng;Guangming Tao;Weilin Xu;Renkun Chen;Xiaobing Luo - 通讯作者:
Xiaobing Luo
Nanowires for thermal energy conversion and management
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Renkun Chen - 通讯作者:
Renkun Chen
Thermoelectric Materials and Devices II
- DOI:
- 发表时间:
2015-10 - 期刊:
- 影响因子:0
- 作者:
Renkun Chen - 通讯作者:
Renkun Chen
In-situ thermophysical measurement of flowing molten chloride salt using modulated photothermal radiometry
使用调制光热辐射测量法对流动熔融氯化盐进行原位热物理测量
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.7
- 作者:
K. Chung;Ye Zhang;Jian Zeng;Fouad Haddad;S. Adapa;Tianshi Feng;Peiwen Li;Renkun Chen - 通讯作者:
Renkun Chen
Renkun Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Renkun Chen', 18)}}的其他基金
Tenth U.S.-Japan Joint Seminar on Nanoscale Transport Phenomena
第十届美日纳米尺度输运现象联合研讨会
- 批准号:
2024027 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Experimental Investigation of Phonon Localization in Nanostructures
纳米结构中声子局域化的实验研究
- 批准号:
1508420 - 财政年份:2015
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
Heat and Charge Transport and Coupling in Quantum-Confined Nanowires
量子限制纳米线中的热和电荷传输及耦合
- 批准号:
1336428 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Novel thermal interface material with Cu nanowire array
合作研究:EAGER:具有铜纳米线阵列的新型热界面材料
- 批准号:
1140121 - 财政年份:2011
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Rules for Polaritonic Chemistry
职业:极化子化学规则
- 批准号:
2236921 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Continuing Grant
CAREER: Statistical Theory of Energy Flow and Chemical Reactivity in Polaritonic Materials
职业:极化材料中能量流和化学反应性的统计理论
- 批准号:
2340746 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Electrochemistry of Polaritonic Substrates
极化基底的电化学
- 批准号:
22H02023 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Electrochemistry of Polaritonic Substrates
极化基底的电化学
- 批准号:
22K18315 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Theory of thermally activated polaritonic chemistry
热激活极化子化学理论
- 批准号:
429589046 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Research Grants
QII-TAQS: Chip-Scale Quantum Emulators Based on Polaritonic Lattices
QII-TAQS:基于极化晶格的芯片级量子模拟器
- 批准号:
1936351 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
CAREER: Graphene-hexagonal Boron Nitride (hBN) Heterostructure Infrared Polaritonic Devices
事业:石墨烯六方氮化硼 (hBN) 异质结构红外极化器件
- 批准号:
1552461 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Macroscopic quantum state engineering and transport in polaritonic devices
极化子器件中的宏观量子态工程和输运
- 批准号:
DP160101371 - 财政年份:2016
- 资助金额:
$ 40.5万 - 项目类别:
Discovery Projects
Development of Near-field Polaritonic Microscopy
近场偏激显微镜的发展
- 批准号:
21686007 - 财政年份:2009
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Young Scientists (A)














{{item.name}}会员




