RAPID: Collaborative Research: Independent Component Analysis Inspired Statistical Neural Networks for 3D CT Scan Based Edge Screening of COVID-19

RAPID:协作研究:独立成分分析启发的统计神经网络,用于基于 3D CT 扫描的 COVID-19 边缘筛查

基本信息

  • 批准号:
    2027539
  • 负责人:
  • 金额:
    $ 8.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

COVID-19, the disease caused by the new coronavirus SARS-CoV-2, has shut down cities in the United State and around the world. Due to the global lack of test kits used to diagnose the disease, it is critical to screen suspected patients first and prioritize those most likely to have COVID-19 for further diagnostic test. As most patients with COVID-19 show visual signs of the pneumonia on images from chest Computerized Tomography (CT) scans, it is possible to screen patients based on these images. However, with the large number of suspected cases and the time required to analyze 3D images, radiologists are challenged to adequately screen all of the images. Most recently, several works have demonstrated the potential of deep neural networks in identifying typical signs or partial signs of COVID-19 pneumonia, drastically speeding up the screening process and reducing the burden on radiologists. Due to the large 3D volumetric data associated with chest CT scans (a few hundred MB per image), however, the deep neural networks for classification, which mostly work on 2D images only, do not work very well on 3D CT images. In this project, , the team explores novel solutions across software and hardware layers to enable a solution that allows plug-and-play for automatic COVID-19 screening with fast turn-around time. The project will enable the deployment of deep learning to efficiently and accurately screen suspected COVID-19 patients, and significantly reduce the burden on radiologists. It can effectively address the diagnosis bottleneck caused by the lack of rRT-PCR test kits. In addition, the proposed techniques can be applied to other areas beyond COVID-19 screening where neural networks need to handle large volumetric data. The project will be made open source to enable wide distribution in a timely manner.The proposed research will explore ICA-Net, a novel Independent Component Analysis (ICA) inspired statistical neural architecture that can efficiently and accurately extract features from 3D CT images of large sizes for COVID-19 screening. ICA-Net will be the first neural architecture that targets large volumetric 3D image classification. In addition, considering the practical use of this project where security/privacy of patient data and fast turn-around time are strongly desired, through hardware/software co-design, the project will identify the best solution to be deployed on the edge using commercially off-the-shelf hardware for plug-and-play in clinics. As such, it can be immediately integrated and used for COVID-19 screening.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19是由新型冠状病毒SARS-CoV-2引起的疾病,已导致美国和世界各地的城市关闭。由于全球缺乏用于诊断该疾病的检测试剂盒,因此首先筛查疑似患者并优先考虑那些最有可能患有COVID-19的患者进行进一步的诊断检测至关重要。由于大多数COVID-19患者在胸部计算机断层扫描(CT)图像上显示出肺炎的视觉体征,因此可以根据这些图像对患者进行筛查。然而,由于大量的疑似病例和分析3D图像所需的时间,放射科医生面临着充分筛选所有图像的挑战。最近,几项工作已经证明了深度神经网络在识别COVID-19肺炎的典型体征或部分体征方面的潜力,大大加快了筛查过程并减轻了放射科医生的负担。然而,由于与胸部CT扫描相关的大型3D体积数据(每张图像几百MB),用于分类的深度神经网络主要只在2D图像上工作,在3D CT图像上工作得不是很好。 在这个项目中,该团队探索了跨软件和硬件层的新颖解决方案,以实现一个允许即插即用的解决方案,用于快速周转的自动COVID-19筛查。该项目将使深度学习的部署能够有效和准确地筛查疑似COVID-19患者,并大大减轻放射科医生的负担。可有效解决因缺乏rRT-PCR检测试剂盒而造成的诊断瓶颈。此外,所提出的技术可以应用于COVID-19筛查以外的其他领域,在这些领域,神经网络需要处理大量数据。该项目将开放源代码,以便及时广泛分发。拟议的研究将探索ICA-Net,这是一种新颖的独立分量分析(伊卡)启发的统计神经架构,可以有效准确地从大尺寸的3D CT图像中提取特征,用于COVID-19筛查。ICA-Net将是第一个针对大型3D图像分类的神经架构。此外,考虑到该项目的实际使用,其中强烈需要患者数据的安全性/隐私性和快速周转时间,通过硬件/软件协同设计,该项目将确定最佳解决方案,使用商业现成的硬件在边缘部署,用于诊所的即插即用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiyu Shi其他文献

DLBC: A Deep Learning-Based Consensus in Blockchains for Deep Learning Services
DLBC:深度学习服务区块链中基于深度学习的共识
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boyang Li;Changhao Chenli;Xiaowei Xu;Yiyu Shi;Taeho Jung
  • 通讯作者:
    Taeho Jung
Optimizing sequential diagnostic strategy for large-scale engineering systems using a quantum-inspired genetic algorithm: A comparative study [J]. , 2019(12). (SCI)
使用量子启发遗传算法优化大型工程系统的顺序诊断策略:比较研究[J]。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Jinsong Yu;Yiyu Shi;Diyin Tang;Hao Liu;Limei Tian
  • 通讯作者:
    Limei Tian
HS3-DPG: Hierarchical Simulation for 3-D P/G Network
HS3-DPG:3-D P/G 网络的分层仿真
Combating Data Leakage Trojans in Commercial and ASIC Applications With Time-Division Multiplexing and Random Encoding
利用时分复用和随机编码对抗商业和 ASIC 应用中的数据泄露木马
Optimal selected phasor measurement units for identifying multiple line outages in smart grid
用于识别智能电网中多条线路停电的最佳选择相量测量单元

Yiyu Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiyu Shi', 18)}}的其他基金

Collaborative Research: DESC: Type II: REFRESH: Revisiting Expanding FPGA Real-estate for Environmentally Sustainability Heterogeneous-Systems
合作研究:DESC:类型 II:REFRESH:重新审视扩展 FPGA 空间以实现环境可持续性异构系统
  • 批准号:
    2324865
  • 财政年份:
    2023
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
FuSe-TG: Cross-layer Co-Design for Self-Evolving Implantable Devices
FuSe-TG:自我进化植入设备的跨层协同设计
  • 批准号:
    2235364
  • 财政年份:
    2023
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
IRES Track I: International Research Experience for Students on Artificial Intelligence for Congenital Heart Diseases
IRES Track I:先天性心脏病人工智能学生国际研究经验
  • 批准号:
    2106416
  • 财政年份:
    2021
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Towards Unsupervised Learning on Resource Constrained Edge Devices with Novel Statistical Contrastive Learning Scheme
合作研究:CNS 核心:小型:利用新颖的统计对比学习方案在资源受限的边缘设备上实现无监督学习
  • 批准号:
    2122220
  • 财政年份:
    2021
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Intermittent and Incremental Inference with Statistical Neural Network for Energy-Harvesting Powered Devices
合作研究:CNS 核心:小型:利用统计神经网络对能量收集供电设备进行间歇和增量推理
  • 批准号:
    2007302
  • 财政年份:
    2020
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    1919167
  • 财政年份:
    2019
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
Phase 1 IUCRC University of Notre Dame: Center for Alternative Sustainable and Intelligent Computing (ASIC)
第一阶段 IUCRC 圣母大学:替代可持续和智能计算中心 (ASIC)
  • 批准号:
    1822099
  • 财政年份:
    2018
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Continuing Grant
University of Notre Dame Planning Grant: I/UCRC for Alternative Sustainable and Intelligent Computing (ASIC)
圣母大学规划补助金:I/UCRC 替代可持续和智能计算 (ASIC)
  • 批准号:
    1650473
  • 财政年份:
    2017
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
IRES: International Research Experience for Students on Design Automation of Three-Dimensional Integrated Circuits
IRES:三维集成电路设计自动化学生国际研究经验
  • 批准号:
    1456867
  • 财政年份:
    2015
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
IRES: International Research Experience for Students on Design Automation of Three-Dimensional Integrated Circuits
IRES:三维集成电路设计自动化学生国际研究经验
  • 批准号:
    1559029
  • 财政年份:
    2015
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425430
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403882
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425429
  • 财政年份:
    2024
  • 资助金额:
    $ 8.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了