SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing

SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性

基本信息

  • 批准号:
    1919167
  • 负责人:
  • 金额:
    $ 34.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Future computer data centers are being flooded with workloads requiring high-levels of computation using power-hungry deep neural network (DNN) models. DNN accelerators based on processing in memory built with new storage devices can offer great energy efficiency and performance for data centers. One challenge faced by these accelerators is their poor stability. This is due to the physical limitations of the new storage devices. This project aims to address this issue by developing efficient approaches to neural networks. One impact of proposed research is to develop more powerful, scalable, and sustainable deep learning computing systems. This will result in new consumer, business, scientific and national security applications. It will affect the fields of big data and cloud computing. This project will lead to new results in Computer Engineering and in fields that are hungry for deep learning capabilities. It will expose students to cutting-edge knowledge and hands-on research opportunities and elevate their competence. It will increase their confidence in facing today's highly competitive global job market. The education impact includes course integration of research results and outreach activities. Special attention is given in this to including women and underrepresented minority groups.The goal of the proposed research is to address a key issue in existing processing-in-memory-based neural network accelerators built with emerging nonvolatile devices, which is the bad stability due to weight uncertainties induced by the device characteristics. To escalate the stability of these promising emerging accelerators in a scalable and sustainable manner for future data centers, the project will include four tasks: 1) the explicitly modeling of weight uncertainties, which may exhibit spatial correlations extracted from device non-idealities, as parameterized canonical distributions. 2) a statistical neural network paradigm, which can be easily integrated into existing convolutional neural network architectures by replacing their deterministic operations with the statistical counterparts operating on parameterized canonical distributions. 3) variability-aware neural network classifier inspired by error correction output codes and modern neural network architecture. 4) variability-aware input pre-processing without touching neural networks. These paradigms will be generic to different software and hardware platforms, and will be implemented and evaluated with a wide set of real-world applications including image classification, biomedical image segmentation, and drone target tracking.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来的计算机数据中心将充斥着需要使用耗电的深度神经网络(DNN)模型进行高级别计算的工作负载。DNN加速器基于新存储设备构建的内存处理,可以为数据中心提供更高的能效和性能。这些加速器面临的一个挑战是它们的稳定性差。这是由于新存储设备的物理限制。该项目旨在通过开发有效的神经网络方法来解决这个问题。拟议研究的一个影响是开发更强大,可扩展和可持续的深度学习计算系统。这将导致新的消费者,商业,科学和国家安全应用。它将影响大数据和云计算领域。该项目将为计算机工程和渴望深度学习能力的领域带来新的成果。它将使学生接触到前沿知识和实践研究机会,并提高他们的能力。这将增加他们面对当今竞争激烈的全球就业市场的信心。教育影响包括课程、研究成果和外联活动的整合。特别注意的是,在这方面,包括妇女和代表性不足的少数groups.The拟议研究的目标是解决一个关键问题,在现有的处理在内存中的基于神经网络加速器建立与新兴的非易失性设备,这是由于重量的不确定性引起的设备特性的稳定性差。为了以可扩展和可持续的方式为未来的数据中心提升这些有前途的新兴加速器的稳定性,该项目将包括四项任务:1)明确建模权重不确定性,这些不确定性可能表现出从设备非理想性中提取的空间相关性,作为参数化的正则分布。2)一种统计神经网络范例,可以通过将其确定性操作替换为对参数化规范分布进行操作的统计对应物来轻松集成到现有的卷积神经网络架构中。3)受纠错输出代码和现代神经网络架构启发的可变性感知神经网络分类器。4)不接触神经网络的可变性感知输入预处理。这些范例将通用于不同的软件和硬件平台,并将通过广泛的实际应用进行实施和评估,包括图像分类,生物医学图像分割和无人机目标跟踪。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reliable and Robust RRAM-based Neuromorphic Computing
  • DOI:
    10.1145/3386263.3407579
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Grace Li Zhang;Bing Li;Ying Zhu;Shuhang Zhang;Tianchen Wang;Yiyu Shi;Tsung-Yi Ho;Hai Li;Ulf Schlichtmann
  • 通讯作者:
    Grace Li Zhang;Bing Li;Ying Zhu;Shuhang Zhang;Tianchen Wang;Yiyu Shi;Tsung-Yi Ho;Hai Li;Ulf Schlichtmann
Device-Circuit-Architecture Co-Exploration for Computing-in-Memory Neural Accelerators
  • DOI:
    10.1109/tc.2020.2991575
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Weiwen Jiang;Qiuwen Lou;Zheyu Yan;Lei Yang;J. Hu;X. Hu;Yiyu Shi
  • 通讯作者:
    Weiwen Jiang;Qiuwen Lou;Zheyu Yan;Lei Yang;J. Hu;X. Hu;Yiyu Shi
Uncertainty Modeling of Emerging Device based Computing-in-Memory Neural Accelerators with Application to Neural Architecture Search
RADARS: Memory Efficient Reinforcement Learning Aided Differentiable Neural Architecture Search
RADARS:记忆高效强化学习辅助可微神经架构搜索
Statistical Training for Neuromorphic Computing using Memristor-based Crossbars Considering Process Variations and Noise
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiyu Shi其他文献

DLBC: A Deep Learning-Based Consensus in Blockchains for Deep Learning Services
DLBC:深度学习服务区块链中基于深度学习的共识
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boyang Li;Changhao Chenli;Xiaowei Xu;Yiyu Shi;Taeho Jung
  • 通讯作者:
    Taeho Jung
Optimizing sequential diagnostic strategy for large-scale engineering systems using a quantum-inspired genetic algorithm: A comparative study [J]. , 2019(12). (SCI)
使用量子启发遗传算法优化大型工程系统的顺序诊断策略:比较研究[J]。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Jinsong Yu;Yiyu Shi;Diyin Tang;Hao Liu;Limei Tian
  • 通讯作者:
    Limei Tian
HS3-DPG: Hierarchical Simulation for 3-D P/G Network
HS3-DPG:3-D P/G 网络的分层仿真
Combating Data Leakage Trojans in Commercial and ASIC Applications With Time-Division Multiplexing and Random Encoding
利用时分复用和随机编码对抗商业和 ASIC 应用中的数据泄露木马
Optimal selected phasor measurement units for identifying multiple line outages in smart grid
用于识别智能电网中多条线路停电的最佳选择相量测量单元

Yiyu Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiyu Shi', 18)}}的其他基金

Collaborative Research: DESC: Type II: REFRESH: Revisiting Expanding FPGA Real-estate for Environmentally Sustainability Heterogeneous-Systems
合作研究:DESC:类型 II:REFRESH:重新审视扩展 FPGA 空间以实现环境可持续性异构系统
  • 批准号:
    2324865
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
FuSe-TG: Cross-layer Co-Design for Self-Evolving Implantable Devices
FuSe-TG:自我进化植入设备的跨层协同设计
  • 批准号:
    2235364
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
IRES Track I: International Research Experience for Students on Artificial Intelligence for Congenital Heart Diseases
IRES Track I:先天性心脏病人工智能学生国际研究经验
  • 批准号:
    2106416
  • 财政年份:
    2021
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Towards Unsupervised Learning on Resource Constrained Edge Devices with Novel Statistical Contrastive Learning Scheme
合作研究:CNS 核心:小型:利用新颖的统计对比学习方案在资源受限的边缘设备上实现无监督学习
  • 批准号:
    2122220
  • 财政年份:
    2021
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Independent Component Analysis Inspired Statistical Neural Networks for 3D CT Scan Based Edge Screening of COVID-19
RAPID:协作研究:独立成分分析启发的统计神经网络,用于基于 3D CT 扫描的 COVID-19 边缘筛查
  • 批准号:
    2027539
  • 财政年份:
    2020
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Intermittent and Incremental Inference with Statistical Neural Network for Energy-Harvesting Powered Devices
合作研究:CNS 核心:小型:利用统计神经网络对能量收集供电设备进行间歇和增量推理
  • 批准号:
    2007302
  • 财政年份:
    2020
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
Phase 1 IUCRC University of Notre Dame: Center for Alternative Sustainable and Intelligent Computing (ASIC)
第一阶段 IUCRC 圣母大学:替代可持续和智能计算中心 (ASIC)
  • 批准号:
    1822099
  • 财政年份:
    2018
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Continuing Grant
University of Notre Dame Planning Grant: I/UCRC for Alternative Sustainable and Intelligent Computing (ASIC)
圣母大学规划补助金:I/UCRC 替代可持续和智能计算 (ASIC)
  • 批准号:
    1650473
  • 财政年份:
    2017
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
IRES: International Research Experience for Students on Design Automation of Three-Dimensional Integrated Circuits
IRES:三维集成电路设计自动化学生国际研究经验
  • 批准号:
    1456867
  • 财政年份:
    2015
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
IRES: International Research Experience for Students on Design Automation of Three-Dimensional Integrated Circuits
IRES:三维集成电路设计自动化学生国际研究经验
  • 批准号:
    1559029
  • 财政年份:
    2015
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
  • 批准号:
    2132049
  • 财政年份:
    2021
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2113307
  • 财政年份:
    2020
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919117
  • 财政年份:
    2019
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    1918987
  • 财政年份:
    2019
  • 资助金额:
    $ 34.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了