III: Small: Data-Driven Control of Epidemic Processes over Complex Dynamic Networks
III:小:复杂动态网络上数据驱动的流行病过程控制
基本信息
- 批准号:2008456
- 负责人:
- 金额:$ 43.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite notable advances in medicine over the last century, recent pandemics such as COVID-19 remind us that the threat of infectious diseases to human populations is very real. While continuing advances in medicine are essential, information technologies can greatly improve our ability to detect and contain the devastating effects of infectious diseases. In this direction, public health agencies collect, periodically update, and publicly report field data containing geolocated information about the tested, infected, recovered, hospitalized, and deceased individuals in those areas affected by the disease. However, this data is unreliable, incomplete, and coarse-grained; therefore, health agencies can greatly benefit from information technologies to filter and analyze field data in order to make reliable predictions about the future spread of the disease. Moreover, the final objective of a health agency is to use this information to design efficient strategies to contain the spread of infectious diseases. To achieve this objective, health agencies have at their disposal epidemic-control resources, such as social distancing, traffic restrictions, and the distribution of pharmaceutical resources (whenever available). Due to the heterogeneity and high cost of these resources, finding the cost-optimal allocation of each type of resource throughout the population is a very challenging problem of utmost societal impact. In this project, we propose to develop an integrated framework for modeling, prediction, and cost-optimal control of epidemic outbreaks using finite resources and unreliable data.In order to implement practical epidemic-control tools, it is necessary to first develop mathematical models able to replicate salient geo-temporal features of disease transmission. These patterns are strongly influenced by the geography of the area over which the disease is spreading, as well as the mobility patterns of the population. In this direction, we will use complex contact graphs to model both realistic geographical constraints and mobility patterns. In particular, the vertices of this graph correspond to towns/districts and its links represent interactions between them. On top of this contact graph, we will build a dynamical model aiming to replicate the complex geo-temporal spread of the disease. In this direction, we will consider a system of stochastic processes, coupled through the edges of the contact graph, to model the evolution of the disease. Once the model of the spread is tuned, we will then proceed to the design of a coordinated strategy to contain the spread of the infection by distributing resources throughout the population. In this direction, we will design and implement an optimization program to find the cost-optimal allocation of heterogeneous resources given a finite budget. In this research task, we must deal with the inherent uncertainty of field data, as well as the presence of sampling biases that can have a dramatic impact on the fairness of the cost-optimal allocation of resources. The success of the proposed research program would greatly improve our ability to efficiently detect and appropriately react to epidemic outbreaks, whereupon a rapid control response can be deployed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管在上个世纪医学取得了显著的进步,但最近COVID-19等大流行病提醒我们,传染病对人类的威胁是非常真实的。虽然医学的不断进步至关重要,但信息技术可以大大提高我们发现和控制传染病破坏性影响的能力。在这个方向上,公共卫生机构收集,定期更新,并公开报告现场数据,其中包含有关受疾病影响的地区的测试,感染,康复,住院和死亡个体的地理定位信息。然而,这些数据是不可靠的,不完整的,粗粒度的;因此,卫生机构可以大大受益于信息技术来过滤和分析现场数据,以便对疾病的未来传播做出可靠的预测。此外,卫生机构的最终目标是利用这些信息来设计有效的战略,以遏制传染病的传播。为了实现这一目标,卫生机构拥有可供支配的药物控制资源,如社交距离、交通限制和药物资源分配(只要有)。由于这些资源的异质性和高成本,在整个人口中找到每种资源的成本最优分配是一个非常具有挑战性的问题,具有最大的社会影响。在本项目中,我们建议开发一个集成框架,用于使用有限资源和不可靠数据对流行病爆发进行建模、预测和成本最优控制。为了实现实用的流行病控制工具,有必要首先开发能够复制疾病传播的显着地理时间特征的数学模型。这些模式受到疾病传播地区的地理以及人口流动模式的强烈影响。在这个方向上,我们将使用复杂的接触图来模拟现实的地理限制和移动模式。特别是,该图的顶点对应于城镇/地区,其链接表示它们之间的相互作用。在这个接触图的基础上,我们将建立一个动态模型,旨在复制疾病的复杂地理时间传播。在这个方向上,我们将考虑一个系统的随机过程,耦合通过边的接触图,模拟疾病的演变。一旦传播模型得到调整,我们将着手设计一个协调的战略,通过在整个人口中分配资源来控制感染的传播。在这个方向上,我们将设计和实现一个优化程序,以找到成本最优分配的异构资源给定的有限预算。在这项研究任务中,我们必须处理现场数据的固有不确定性,以及抽样偏差的存在,可以有一个显着的影响公平的成本最优的资源分配。该研究项目的成功将大大提高我们有效检测和适当应对疫情爆发的能力,从而可以部署快速控制响应。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Challenges and Future Directions in Pandemic Control
- DOI:10.1109/lcsys.2021.3085700
- 发表时间:2022-01-01
- 期刊:
- 影响因子:3
- 作者:Alamo,Teodoro;Millan,Pablo;Giordano,Giulia
- 通讯作者:Giordano,Giulia
Adaptive Test Allocation for Outbreak Detection and Tracking in Social Contact Networks
用于社交联系网络中爆发检测和跟踪的自适应测试分配
- DOI:10.1137/20m1377874
- 发表时间:2022
- 期刊:
- 影响因子:2.2
- 作者:Batlle, Pau;Bruna, Joan;Fernandez-Granda, Carlos;Preciado, Victor M.
- 通讯作者:Preciado, Victor M.
Network Design for Controllability Metrics
可控性指标的网络设计
- DOI:10.1109/tcns.2020.2978118
- 发表时间:2020
- 期刊:
- 影响因子:4.2
- 作者:Becker, Cassiano O.;Pequito, Sergio;Pappas, George J.;Preciado, Victor M.
- 通讯作者:Preciado, Victor M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VICTOR PRECIADO其他文献
VICTOR PRECIADO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VICTOR PRECIADO', 18)}}的其他基金
CAREER: Scalable Algorithms for Spectral Analysis of Massive Networked Systems
职业:大规模网络系统频谱分析的可扩展算法
- 批准号:
1651433 - 财政年份:2017
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
BIGDATA: F: DKM: Spectral Analysis and Control of Evolving Large Scale Networks
BIGDATA:F:DKM:不断发展的大规模网络的频谱分析和控制
- 批准号:
1447470 - 财政年份:2014
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Optimal Communication for Faster Sensor Network Coordination
NeTS:媒介:协作研究:更快传感器网络协调的最佳通信
- 批准号:
1302222 - 财政年份:2013
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
- 批准号:
2246796 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
- 批准号:
2311582 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
III: Small: Rethinking the Data Organization and Lifecycle in LSM Storage Systems
III:小:重新思考 LSM 存储系统中的数据组织和生命周期
- 批准号:
2227669 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
III: Small: Statistical Inference through Data-Collection and Expert-Knowledge Incorporation
III:小:通过数据收集和专家知识整合进行统计推断
- 批准号:
2311969 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
III: Small: Semantic Version Management in Data Lakes
III:小:数据湖中的语义版本管理
- 批准号:
2325632 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311597 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
III : Small : Integrating and Learning on Spatial Data via Multi-Agent Simulation
III:小:通过多智能体模拟集成和学习空间数据
- 批准号:
2311954 - 财政年份:2023
- 资助金额:
$ 43.99万 - 项目类别:
Standard Grant
FET: III: Small: Innovative Approaches for Bias Correction and Systems-level Analysis in Integrated Multi-omics Data
FET:III:小型:集成多组学数据中的偏差校正和系统级分析的创新方法
- 批准号:
2203236 - 财政年份:2022
- 资助金额:
$ 43.99万 - 项目类别:
Continuing Grant