Electronic devices enabled by magnon transfer torques

由磁振子传递扭矩驱动的电子设备

基本信息

  • 批准号:
    2011331
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Spin-based electronic devices for information storage and memory rely on the efficient control of magnetization orientation of nanoscale magnetic materials. At present-day devices, spins and charges of the conduction electrons provide the angular momentum and the energy needed for the switching of magnetization states. However, the current density required for fast switching remains undesirably high and the energy consumption associated with the Joule heating of the electric current makes next-generation spin-based memories challenging. This proposal is to explore alternative angular momentum carriers, known as magnons, to achieve magnetization switching with far less energy consumption. Magnons are quasi-particles that possess same amount of angular momentum as electron spins, but without electric charge. Therefore, there is no Joule heating when magnons travel in magnetic materials. Recently, there are a number of groups and the PI have demonstrated that magnons can also serve as active angular momentum carriers that are capable of manipulating magnetization states. This proposal will theoretically investigate the effects of magnon motion in a number of prototype magnetic structure and materials. The goal is to identify physical processes that govern the magnon-driven magnetization switching. If successful, one would create a disruption spintronic devices by using magnons as an information manipulator which is far more energy efficient, compared to spins of conduction electrons. The educational components of the proposal include strong graduate student participations in research, training, and visiting industrial research laboratories, as well as for PI to develop a spintronics course related to this research project.Similar to the electron spin current that transfers the spin angular momentum of mobile electrons to local magnetization, known as spin-transfer torques, magnon currents can efficiently transfer magnon angular momentum to magnetic texture as well, leading to magnetic configuration changes. This proposal will explore theoretical foundation of this magnon transfer torques (MTT), predict plausible structure for MTT driven magnetization switching and dynamics, and propose device concepts for MTT applications. The present proposal aims at advancing the field of spintronics by theoretically investigating the generation, propagation, and detection of non-equilibrium magnons in magnetic heterostructure. Magnons are low-energy excitations hosted by magnetically ordered texture (including ferrro-, antiferro- and ferri-magnets). The scientific issues will be addressed, include the physics and key materials parameters that give rise large MTT, magnetization dynamics driven by MTT, and the switching efficiency of MTT compared to that of STT in devices such as magnetic tunnel junctions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于信息存储和存储器的基于自旋的电子器件依赖于对纳米级磁性材料的磁化取向的有效控制。在当今的设备中,传导电子的自旋和电荷提供了磁化状态切换所需的角动量和能量。然而,快速切换所需的电流密度仍然不期望地高,并且与电流的焦耳加热相关联的能量消耗使得下一代基于自旋的存储器具有挑战性。这项建议是探索替代角动量载体,称为磁振子,以实现磁化切换少得多的能量消耗。磁振子是具有与电子自旋相同的角动量但不带电荷的准粒子。因此,当磁振子在磁性材料中运动时,不存在焦耳加热。最近,有一些小组和PI已经证明,磁振子也可以作为积极的角动量载体,能够操纵磁化状态。这个提议将从理论上研究磁振子运动在一些原型磁结构和材料中的影响。我们的目标是确定的物理过程,管理磁振子驱动的磁化切换。如果成功的话,人们将通过使用磁振子作为信息操纵器来制造一种破坏性的自旋电子器件,与传导电子的自旋相比,这种信息操纵器更加节能。该提案的教育部分包括研究生参与研究、培训和参观工业研究实验室,以及PI开发与本研究项目相关的自旋电子学课程。类似于电子自旋电流,将移动的电子的自旋角动量转移到局部磁化,称为自旋转移力矩,磁振子电流也可以有效地将磁振子角动量传递到磁织构,从而导致磁结构的变化。本研究将探讨此磁振子转移力矩(MTT)的理论基础,预测MTT驱动磁化翻转的合理结构和动力学,并提出MTT应用的器件概念。本研究的目的是通过对磁异质结构中非平衡磁振子的产生、传播和探测的理论研究,推动自旋电子学的发展。磁振子是由磁有序结构(包括铁磁、反铁磁和亚铁磁)承载的低能激发。科学问题将得到解决,包括物理和关键材料参数,产生大MTT,由MTT驱动的磁化动力学,以及MTT的开关效率相比,STT的设备,如磁性隧道junctions.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prediction of a first-order phase transition in two-dimensional ferromagnets in the presence of random fields
Quantum Stoner–Wohlfarth model of two-dimensional single-domain magnets
  • DOI:
    10.1063/5.0143593
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    E. Ibrahim;Shufeng Zhang
  • 通讯作者:
    E. Ibrahim;Shufeng Zhang
Quantum theory of spin-torque driven magnetization switching
自旋力矩驱动磁化翻转的量子理论
  • DOI:
    10.1103/physrevb.103.094442
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tang, Ping;Han, Xiufeng;Zhang, Shufeng
  • 通讯作者:
    Zhang, Shufeng
Spin transport in noncollinear antiferromagnetic metals
非共线反铁磁金属中的自旋输运
  • DOI:
    10.1103/physrevb.102.134403
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Cheng, Yihong;Zhang, Shufeng
  • 通讯作者:
    Zhang, Shufeng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shufeng Zhang其他文献

Survival stratification in childhood rhabdomyosarcoma of the extremities: a derivation and validation study
儿童四肢横纹肌肉瘤的生存分层:推导和验证研究
  • DOI:
    10.1038/s41598-020-62656-x
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Linchao Zhu;Ying Sun;Xuhui Wang;Lin Wang;Shufeng Zhang;Q. Meng;Xiao
  • 通讯作者:
    Xiao
A Pilot Study on Falling-Risk Detection Method Based on Postural Perturbation Evoked Potential Features
基于姿势摄动诱发电位特征的跌倒风险检测方法初步研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shenglong Jiang;Hongzhi Qi;Jie Zhang;Shufeng Zhang;Rui Xu;Yuan Liu;Lin Meng;Dong Ming
  • 通讯作者:
    Dong Ming
Fabrication of polymer-modified magnetic nanoparticles based adsorbents for capture and release of quinolones by manipulating metal-coordinate interaction
通过操纵金属配位相互作用制备聚合物改性磁性纳米颗粒吸附剂以捕获和释放喹诺酮类药物
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Mingming Zhang;Juan Qiao;Zhenwen Zhao;Shufeng Zhang;Li Qi
  • 通讯作者:
    Li Qi
Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions
  • DOI:
    10.1103/physrevlett.83.640
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Shufeng Zhang
  • 通讯作者:
    Shufeng Zhang
Sign Change of Spin-Orbit Torque in Pt/NiO/CoFeB Structures
Pt/NiO/CoFeB 结构中自旋轨道扭矩的符号变化
  • DOI:
    10.1103/physrevlett.128.217702
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Dapeng Zhu;Tianrui Zhang;Xiao Fu;Runrun Hao;Amir Hamzić;Huaiwen Yang;Xueying Zhang;Hui Zhang;Ao Du;Danrong Xiong;Kewen Shi;Shishen Yan;Shufeng Zhang;Albert Fert;Weisheng Zhao
  • 通讯作者:
    Weisheng Zhao

Shufeng Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shufeng Zhang', 18)}}的其他基金

Two-Dimensional Magnets in Spintronic Devices: Roles of Spin Fluctuations
自旋电子器件中的二维磁体:自旋涨落的作用
  • 批准号:
    2401267
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Theory and Modelling for Antiferromagnetric Materials-based Spintronic Devices
基于反铁磁材料的自旋电子器件的理论和建模
  • 批准号:
    1708180
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Modeling of Ultrafast Magnetization Dynamics at High temperatures
高温下超快磁化动力学建模
  • 批准号:
    1404542
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Spin information propagation in metallic and insulating ferromagnet based devices
金属和绝缘铁磁体设备中的自旋信息传播
  • 批准号:
    1127751
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Magnetic Relaxation and Dynamics in Ferromagnetic Nanostructures
铁磁纳米结构中的磁弛豫和动力学
  • 批准号:
    0854641
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Magnetic Relaxation and Dynamics in Ferromagnetic Nanostructures
铁磁纳米结构中的磁弛豫和动力学
  • 批准号:
    0704182
  • 财政年份:
    2007
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Spin Transport Theory Beyond Drift-Diffusion Equation
超越漂移扩散方程的自旋输运理论
  • 批准号:
    0314456
  • 财政年份:
    2003
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
SPIN ELECTRONICS: Interplay Between Spin Transport and Magnetization Dynamics in Magnetic Nanostructures
自旋电子学:磁性纳米结构中自旋输运和磁化动力学之间的相互作用
  • 批准号:
    0223568
  • 财政年份:
    2002
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Spin-Dependent Transport in Magnetic Tunnel Junctions
磁隧道结中的自旋相关输运
  • 批准号:
    0076171
  • 财政年份:
    2000
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
  • 批准号:
    32373187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research:CISE-MSI:RCBP-RF:CNS:Orchestration of Network Slicing for 5G-Enabled IoT Devices Using Reinforcement Learning
合作研究:CISE-MSI:RCBP-RF:CNS:使用强化学习为支持 5G 的物联网设备进行网络切片编排
  • 批准号:
    2318636
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Incorporating new dynamic structures in ultrasonic surgical devices enabled by 3D printing titanium.
通过 3D 打印钛将新的动态结构融入超声波手术设备中。
  • 批准号:
    2812613
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
  • 批准号:
    10816667
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
  • 批准号:
    10658204
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Collaborative Research:CISE-MSI:RCBP-RF:CNS:Orchestration of Network Slicing for 5G-Enabled IoT Devices Using Reinforcement Learning
合作研究:CISE-MSI:RCBP-RF:CNS:使用强化学习为支持 5G 的物联网设备进行网络切片编排
  • 批准号:
    2318634
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Ultra-stable, phase sensitive, snapshot OCT system enabled by 2-Photon additive manufacturing
通过 2 光子增材制造实现超稳定、相敏、快照 OCT 系统
  • 批准号:
    10607853
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Collaborative Research:CISE-MSI:RCBP-RF:CNS:Orchestration of Network Slicing for 5G-Enabled IoT Devices Using Reinforcement Learning
合作研究:CISE-MSI:RCBP-RF:CNS:使用强化学习为支持 5G 的物联网设备进行网络切片编排
  • 批准号:
    2318635
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Nanoporous semiconductor-enabled multi-site photostimulation for cardiac resynchronization therapy
用于心脏再同步治疗的纳米多孔半导体多部位光刺激
  • 批准号:
    10861527
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Team-Based Virtual Field Exercises for HAZMAT Training
基于团队的危险品培训虚拟现场练习
  • 批准号:
    10684418
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了