Adaptive Analysis of Sparse Factorial Designs and Related Problems
稀疏因子设计的自适应分析及相关问题
基本信息
- 批准号:0308861
- 负责人:
- 金额:$ 8.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0308861Adaptive analysis of sparse factorial designs and related problemsWeizhen Wang and Daniel T. VossAbstractThe investigators study the statistical theory underlying control of error rates for adaptive analysis of sparse factorial designs. Considered are orthogonal and nonorthogonal saturated designs, nearly saturated designs, and supersaturated designs. Methods under consideration rely upon the presence of an adequate but unknown level of effect sparsity, for lack of an adequate variance estimator independent of the effect estimates, and adapt to the level of effect sparsity suggested by the data. Much of the difficulty and intrigue lies in the apparently circular nature of the required arguments, since relatively large effect estimates are in some sense adaptively set aside for variance estimation, then the resulting variance estimate is used to make inferences about the effects. Lack of an adequate independent variance estimator gives rise to a variety of problems that are important and technically challenging. The investigators bring to bear on these problems a geometric perspective and the rigor and perspective of the multiple comparisons field, seeking methods of inference that control error rate strongly, while using the data adaptively and efficiently.The investigators study the probabilistic foundations of data analysis for sophisticated experiments fundamental to the development and production of high-quality, low-cost products. Critical characteristics often depend in unknown ways on an unknown subset of a larger collection of variables or factors. The resulting necessity to study many factors simultaneously in small, economical experiments--essentially to learn a lot from but a little data--presents many statistical challenges. While great progress has been made in the development of designs or plans for conducting such experiments, fundamental problems concerning the corresponding data analysis remain. The investigators study the theoretical foundations for the analysis of data from such experiments, and consequently propose innovative methods of data analysis, justifying them mathematically. This entails seeking solutions to a variety of related problems in probability pertinent to the analysis of data from such factorial experiments. Results have direct applications in engineering product and process design and in statistical process control and improvement, enhancing efforts to achieve competitive economic advantage.
DMS-0308861稀疏析因设计的自适应分析及相关问题王维珍和丹尼尔·沃斯摘要研究人员研究稀疏析因设计自适应分析中错误率控制的统计理论。考虑了正交性和非正交性饱和设计、近饱和设计和过饱和设计。考虑中的方法依赖于适当但未知水平的效果稀疏性的存在,因为缺乏独立于效果估计的适当的方差估计器,并适应数据所建议的效果稀疏性水平。许多困难和诡计在于所需参数的明显循环性质,因为在某种意义上,相对较大的效应估计被自适应地留作方差估计,然后产生的方差估计被用来对影响进行推断。缺乏足够的独立方差估计导致了各种重要的和技术上具有挑战性的问题。研究人员将几何观点和多重比较领域的严谨和视角运用到这些问题上,寻求强有力地控制错误率的推理方法,同时自适应和高效地使用数据。研究人员研究复杂实验的数据分析的概率基础,这是开发和生产高质量、低成本产品的基础。关键特征通常以未知的方式依赖于更大的变量或因素集合中的未知子集。由此产生的在小型、经济的实验中同时研究许多因素的必要性--基本上是从很少的数据中学到很多东西--带来了许多统计学上的挑战。虽然在设计或计划进行这类实验方面取得了很大进展,但与相应的数据分析有关的基本问题仍然存在。研究人员研究了分析此类实验数据的理论基础,因此提出了数据分析的创新方法,并从数学上证明了这些方法的合理性。这需要在与此类析因实验的数据分析相关的概率中寻求各种相关问题的解决方案。结果直接应用于工程产品和过程设计以及统计过程控制和改进,加强努力以获得竞争经济优势。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weizhen Wang其他文献
Evapotranspiration Integrated Model for Analysis of Soil Salinization Affected by Root Selective Absorption
根系选择性吸收影响土壤盐渍化分析的蒸散综合模型
- DOI:
10.2525/ecb.53.199 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ryosuke Nomiyama;Daisuke Yasutake;Yuki Sago;Makito Mori;Kenta Tagawa;Hiroyuki Cho;Yueru Wu;Weizhen Wang;Masaharu Kitano. - 通讯作者:
Masaharu Kitano.
Comparison Between Continuous and Discrete-Time
连续时间和离散时间的比较
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Weizhen Wang;M. Safonov - 通讯作者:
M. Safonov
AN ITERATIVE CONSTRUCTION OF CONFIDENCE INTERVALS FOR A PROPORTION
- DOI:
10.5705/ss.2012.257 - 发表时间:
2014 - 期刊:
- 影响因子:1.4
- 作者:
Weizhen Wang - 通讯作者:
Weizhen Wang
An analysis of spatial representativeness of air temperature monitoring stations
气温监测站空间代表性分析
- DOI:
10.1007/s00704-017-2133-6 - 发表时间:
2018-05 - 期刊:
- 影响因子:0
- 作者:
Suhua Liu;Hongbo Su;Jing Tian;Weizhen Wang - 通讯作者:
Weizhen Wang
In situ architecture of the intercellular organelle reservoir between epididymal epithelial cells by volume electron microscopy
通过体积电子显微镜对附睾上皮细胞间细胞器储存器的原位结构研究
- DOI:
10.1038/s41467-025-56807-9 - 发表时间:
2025-02-15 - 期刊:
- 影响因子:15.700
- 作者:
Xia Li;Feng Qiao;Jiansheng Guo;Ting Jiang;Huifang Lou;Huixia Li;Gangcai Xie;Hangjun Wu;Weizhen Wang;Ruoyu Pei;Sha Liu;Mei Ye;Jin Li;Shiqin Huang;Mengya Zhang;Chaoye Ma;Yiwen Huang;Shushu Xu;Xiaofeng Li;Xiao Sun;Jun Yu;Kin Lam Fok;Shumin Duan;Hao Chen - 通讯作者:
Hao Chen
Weizhen Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weizhen Wang', 18)}}的其他基金
Two Problems in Statistical Inference
统计推断中的两个问题
- 批准号:
0906858 - 财政年份:2009
- 资助金额:
$ 8.71万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Sparse factor analysis in high-dimensional time series and its application to energy science
高维时间序列稀疏因子分析及其在能源科学中的应用
- 批准号:
23K11007 - 财政年份:2023
- 资助金额:
$ 8.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
$ 8.71万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152704 - 财政年份:2022
- 资助金额:
$ 8.71万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
- 批准号:
2240708 - 财政年份:2022
- 资助金额:
$ 8.71万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152687 - 财政年份:2022
- 资助金额:
$ 8.71万 - 项目类别:
Standard Grant
Sparse and Efficient Estimation with Semiparametric Models in Meta-Analysis
荟萃分析中半参数模型的稀疏有效估计
- 批准号:
2113674 - 财政年份:2021
- 资助金额:
$ 8.71万 - 项目类别:
Continuing Grant
Machine Learning for Signal Analysis and System Modeling: Sparse and Event Driven Strategies
用于信号分析和系统建模的机器学习:稀疏和事件驱动策略
- 批准号:
RGPIN-2017-05939 - 财政年份:2021
- 资助金额:
$ 8.71万 - 项目类别:
Discovery Grants Program - Individual
Pattern Extraction by Independent Component Analysis and Multi-layer Sparse Network
独立成分分析和多层稀疏网络的模式提取
- 批准号:
21K12036 - 财政年份:2021
- 资助金额:
$ 8.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of bounding flight in birds by dynamic sparse modeling and its application to drones
动态稀疏建模分析鸟类弹跳飞行及其在无人机中的应用
- 批准号:
20K21008 - 财政年份:2020
- 资助金额:
$ 8.71万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
- 批准号:
2007649 - 财政年份:2020
- 资助金额:
$ 8.71万 - 项目类别:
Standard Grant